Metabolite information |
|
HMDB ID | HMDB0000267 |
Synonyms |
(-)-2-Pyrrolidone-5-carboxylate(-)-2-Pyrrolidone-5-carboxylic acid(-)-Pyroglutamate(-)-Pyroglutamic acid(5S)-2-Oxopyrrolidine-5-carboxylate(5S)-2-Oxopyrrolidine-5-carboxylic acid(S)-(-)-2-Pyrrolidone-5-carboxylate(S)-(-)-2-Pyrrolidone-5-carboxylic acid(S)-(-)-g-Butyrolactam-g-carboxylate(S)-(-)-g-Butyrolactam-g-carboxylic acid(S)-(-)-gamma-Butyrolactam-gamma-carboxylate(S)-(-)-gamma-Butyrolactam-gamma-carboxylic acid(S)-2-Pyrrolidone-5-carboxylate(S)-2-Pyrrolidone-5-carboxylic acid(S)-5-oxo-2-Pyrrolidinecarboxylate(S)-5-oxo-2-Pyrrolidinecarboxylic acid(S)-Pyroglutamate(S)-Pyroglutamic acid2-L-Pyrrolidone-5-carboxylate2-L-Pyrrolidone-5-carboxylic acid2-Oxopyrrolidine-5(S)-carboxylate2-Oxopyrrolidine-5(S)-carboxylic acid2-Pyrrolidinone-5-carboxylate2-Pyrrolidinone-5-carboxylic acid5-Carboxy-2-pyrrolidinone5-Ketoproline5-L-Oxoproline5-Oxoproline5-Oxopyrrolidine-2-carboxylic acid5-Pyrrolidinone-2-carboxylate5-Pyrrolidinone-2-carboxylic acid5-Pyrrolidone-2-carboxylate5-Pyrrolidone-2-carboxylic acid5-oxo-L-ProlineAjidew a 100GlutimateGlutimic acidGlutiminateGlutiminic acidL-2-Pyrrolidone-5-carboxylateL-2-Pyrrolidone-5-carboxylic acidL-5-Carboxy-2-pyrrolidinoneL-5-OxoprolineL-5-Pyrrolidone-2-carboxylateL-5-Pyrrolidone-2-carboxylic acidL-5-oxo-2-PyrrolidinecarboxylateL-5-oxo-2-Pyrrolidinecarboxylic acidL-Glutamic acid g-lactamL-GlutimateL-Glutimic acidL-GlutiminateL-Glutiminic acidL-PyroglutamateL-Pyroglutamic acidL-PyrrolidinonecarboxylateL-Pyrrolidinonecarboxylic acidL-PyrrolidonecarboxylateL-Pyrrolidonecarboxylic acidMagnesium pidolateOxoprolineOxopyrrolidinecarboxylateOxopyrrolidinecarboxylic acidPidolatePidolate, magnesiumPidolic acidPidolidonePyroglutamatePyrrolidinonecarboxylatePyrrolidinonecarboxylic acidPyrrolidone-5-carboxylatePyrrolidone-5-carboxylic acidPyrrolidonecarboxylic acid |
Chemical formula | C5H7NO3 |
IUPAC name | (2S)-5-oxopyrrolidine-2-carboxylic acid |
CAS registry number | 98-79-3 |
Monoisotopic molecular weight | 129.042593095 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Yue et al. 2018 | China | plasma | diagnosis | SCLC | – | 20 | – | – | – | healthy | 20 | – | – | – |
Klupczynska et al. 2016b | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 90 | 58, 32 | 64 ± 6.9 | smoker, non-smoker, unknown | healthy | 62 | 40, 22 | 62 ± 8.8 | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | Japan | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | Japan | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015b | China | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Callejon-Leblic et al. 2016 | Spain | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Klupczynska et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II | 50 | 28, 22 | 65 (53-86) | – | healthy | 25 | 14, 11 | 64 (50-78) | – |
Klupczynska et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II | 50 | 28, 22 | 65 (53-86) | – | healthy | 25 | 14, 11 | 64 (50-78) | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Mu et al. 2019 | China | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Huang et al. 2019 | China | plasma | diagnosis | lung cancer | – | 31 | 19, 12 | 28-64 | – | healthy | 35 | 24, 11 | 23-60 | – |
Huang et al. 2019 | China | plasma | diagnosis | lung cancer | – | 31 | 19, 12 | 28-64 | – | healthy | 35 | 24, 11 | 23-60 | – |
Zhao et al. 2021 | China | Serum | diagnosis | LCC, ADC, SCC, SCLC | I, II, III, IV | 39 | 21, 85 | – | – | healthy control | 40 | 18, 89 | – | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | adenocarcinoma (ADC) | I, II, III | 33 | 23, 10 | 64.77 ± 8.44 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Kowalczyk et al. 2021 | Poland | Tissue | diagnosis | squemous cell carcinoma (SCC) | I, II, III | 54 | 39, 15 | 64.45 ± 8.02 | – | healthy control | 20 | 13, 7 | 61.5 ± 12.06 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Mazzone et al. 2016 | LC | ESI | negative | linear ion-trap | MS/MS |
Yue et al. 2018 | LC | ESI | both | QTRAP | MS/MS |
Klupczynska et al. 2016b | LC | ESI | negative | triple quadrupole | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Klupczynska et al. 2017 | LC | ESI | positive | Q-Orbitrap | MS/MS |
Klupczynska et al. 2017 | LC | ESI | positive | Q-Orbitrap | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Mu et al. 2019 | GC | – | – | – | – |
Huang et al. 2019 | LC | ESI | negative | Q-Orbitrap | MS/MS |
Huang et al. 2019 | LC | ESI | positive | Q-Orbitrap | MS/MS |
Zhao et al. 2021 | LC | ESI | both | Q-TOF | MS/MS |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Kowalczyk et al. 2021 | LC | ESI | both | Q-TOF | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Yue et al. 2018 | Analyst, MultiQuant | – |
Klupczynska et al. 2016b | Analyst software | – |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Chen et al. 2015b | ChemStation | NIST |
Chen et al. 2015b | ChemStation | NIST |
Chen et al. 2015b | ChemStation | NIST |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Klupczynska et al. 2017 | MZmine 2.19 software | In-house library |
Klupczynska et al. 2017 | MZmine 2.19 software | In-house library, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Mu et al. 2019 | – | – |
Huang et al. 2019 | XCMS | OSI-SMMS |
Huang et al. 2019 | XCMS | OSI-SMMS |
Zhao et al. 2021 | XCMS, CAMERA, metaX | KEGG, HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Kowalczyk et al. 2021 | Mass Hunter Qualitative Analysis Software, Mass Profiler Professional | METLIN, KEGG, LIPIDMAPS, and HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 195323.272727273 | 203595.090909091 | 0.96 | 0.90 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 201697.888888889 | 197444.35 | 1.02 | 0.61 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 1.003324± 0.2046687 | 1.020258± 0.1668089 | 0.98 | 0.46 | 0.54 | – |
Yue et al. 2018 | OPLS-DA, student’s t-test | 2.91±0.84 ng/mL | 1.71±0.92 ng/mL | 6.36 | 1.23e-09 | – | 1.98 |
Klupczynska et al. 2016b | Mann-Whitney U test | 26.99 ± 11.56 μmol/l | 35.28 ± 10.22 μmol/l | 0.77 | 2.64e-08 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 44799 ± 14621 | 46504 ± 12210 | 0.96 | 0.42 | 0.67 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 45736 ± 9536 | 39616 ± 8849 | 1.15 | 5.00e-03 | 0.09 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 60393 ± 13891 | 56530 ± 11065 | 1.07 | 0.20 | 0.54 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 80594 ± 21724 | 83104 ± 16481 | 0.97 | 0.39 | 0.69 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 2.06 | 5.00e-03 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.89 | 0.11 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.85 | 1.90e-03 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.83 | 6.20e-03 | – | – |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 1.82 | 1.00e-03 | – | 1.35 |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 0.82 | 1.00e-03 | – | 1.09 |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 0.82 | 0.02 | – | 1.00 |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.10 | – | 0.09 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.83 | 0.04 | – | 1.01 |
Klupczynska et al. 2017 | t-test | – | – | 0.79 | 3.50e-04 | 4.54e-03 | – |
Klupczynska et al. 2017 | t-test | – | – | 0.78 | 1.26e-03 | 0.01 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.17 | 0.06 | 0.08 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.00 | 0.99 | 0.99 | – |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.77 | 1.00e-03 | 1.00e-03 | 1.47 |
Huang et al. 2019 | OPLS-DA, Mann-Whitney U test | – | – | 0.69 | 9.47e-04 | – | 1.72 |
Huang et al. 2019 | OPLS-DA, Mann-Whitney U test | – | – | 0.52 | 8.00e-07 | – | 2.07 |
Zhao et al. 2021 | Student’s t-test, PLS-DA, | – | – | 1.62 | 1.28e-05 | – | 2.16 |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 1.27e-03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 0.03 | – | – |
Kowalczyk et al. 2021 | Mann–Whitney U-test and Benjamini–Hochberg false discovery rate, partial least squares discriminant analysis (PLS-DA) | – | – | – | 5.61e-03 | – | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Yue et al. 2018 | – | – | – | – | – | – |
Klupczynska et al. 2016b | ROC curve analysis | stage I vs. control: 29.6; stage II vs. control: 29.6; stage III vs. control: 28 | 0.766; stage I vs. control: 0.752; stage II vs. control: 0.748; stage III vs. control: 0.799 | stage I vs. control: 0.8; stage II vs. control: 0.8; stage III vs. control: 0.8 | stage I vs. control: 0.7; stage II vs. control: 0.7; stage III vs. control: 0.7 | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.57 | – | – | – |
Klupczynska et al. 2017 | ROC curve analysis (Monte-Carlo cross validation) | – | 0.705 (0.560–0.813) | 0.63 | 0.72 | – |
Klupczynska et al. 2017 | ROC curve analysis (Monte-Carlo cross validation) | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |
Huang et al. 2019 | – | – | – | – | – | – |
Huang et al. 2019 | – | – | – | – | – | – |
Zhao et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |
Kowalczyk et al. 2021 | – | – | – | – | – | – |