Metabolite information |
|
HMDB ID | HMDB0000883 |
Synonyms |
2-amino-3-Methylbutanoate2-amino-3-Methylbutanoic acid2-amino-3-Methylbutyrate2-amino-3-Methylbutyric acidBeautification productCarcinoma of the lungCoffeeCoffee beanCsfCucurbitsCytoplasmaDietary supplementDigestionEpileptic spasmsEssential mineralExtracellular regionFaecalFaecesFaunaFecalFloraGourdsGramineaeHypoglycaemiaL ValineL-ValinL-[+]-a-AminoisovalerateL-[+]-a-Aminoisovaleric acidL-[+]-alpha-AminoisovalerateL-[+]-alpha-Aminoisovaleric acidL-[+]-α-aminoisovalerateL-[+]-α-aminoisovaleric acidL-a-amino-b-MethylbutyrateL-a-amino-b-Methylbutyric acidL-alpha-amino-beta-MethylbutyrateL-alpha-amino-beta-Methylbutyric acidL-α-amino-β-methylbutyrateL-α-amino-β-methylbutyric acidLegumeLeukaemiaLung carcinomaNutraceuticalPapilionoideaePcpPersonal hygieneSoySoyaSoya beanSoybeanStoolToiletriesToiletryTrace mineralVVALINEValValine transaminase deficiencyValinemia[2S]-2-amino-3-Methylbutanoate[2S]-2-amino-3-Methylbutanoic acid[S]-2-amino-3-Methyl-butanoate[S]-2-amino-3-Methyl-butanoic acid[S]-2-amino-3-Methylbutanoate[S]-2-amino-3-Methylbutanoic acid[S]-2-amino-3-Methylbutyrate[S]-2-amino-3-Methylbutyric acid[S]-Valine[S]-a-amino-b-Methylbutyrate[S]-a-amino-b-Methylbutyric acid[S]-alpha-amino-beta-Methylbutyrate[S]-alpha-amino-beta-Methylbutyric acid |
Chemical formula | C5H11NO2 |
IUPAC name | (2S)-2-amino-3-methylbutanoic acid |
CAS registry number | 72-18-4 |
Monisotopic molecular weight | 117.078978601 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pahtways |
2-Methyl-3-Hydroxybutryl CoA Dehydrogenase Deficiency3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency3-Methylcrotonyl Coa Carboxylase Deficiency Type I3-Methylglutaconic Aciduria Type I3-Methylglutaconic Aciduria Type III3-Methylglutaconic Aciduria Type IV3-hydroxyisobutyric acid dehydrogenase deficiency3-hydroxyisobutyric aciduriaAmikacin Action PathwayArbekacin Action PathwayAzithromycin Action PathwayBeta-Ketothiolase DeficiencyChloramphenicol Action PathwayClarithromycin Action PathwayClindamycin Action PathwayClomocycline Action PathwayDemeclocycline Action PathwayDoxycycline Action PathwayErythromycin Action PathwayGentamicin Action PathwayIsobutyryl-coa dehydrogenase deficiencyIsovaleric AciduriaIsovaleric acidemiaJosamycin Action PathwayKanamycin Action PathwayLincomycin Action PathwayLymecycline Action PathwayMalonic AciduriaMalonyl-coa decarboxylase deficiencyMaple Syrup Urine DiseaseMethacycline Action PathwayMethylmalonate Semialdehyde Dehydrogenase DeficiencyMethylmalonic AciduriaMethylmalonic Aciduria Due to Cobalamin-Related DisordersMinocycline Action PathwayNeomycin Action PathwayNetilmicin Action PathwayOxytetracycline Action PathwayParomomycin Action PathwayPropanoate MetabolismPropionic AcidemiaRolitetracycline Action PathwayRoxithromycin Action PathwaySpectinomycin Action PathwayStreptomycin Action PathwayTelithromycin Action PathwayTetracycline Action PathwayTigecycline Action PathwayTobramycin Action PathwayTranscription/TranslationTroleandomycin Action PathwayValine, Leucine and Isoleucine Degradation |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Ni et al. 2019 | – | serum | diagnosis | lung cancer | – | 40 | 26, 14 | 66.7 (49-83) | – | healthy | 100 | 65, 35 | 64.1 (41-90) | – |
Ni et al. 2016 | – | serum | diagnosis | lung cancer | – | 40 | 14, 26 | 67 | – | healthy | 100 | – | – | – |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Klupczynska et al. 2016a | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 90 | 58, 32 | 64 (48-86) | current, non-smoker, unknown | healthy | 63 | 41, 22 | 62 (43-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Maeda et al. 2010 | – | plasma | – | NSCLC | I, II, III, IV | 141 | 93, 48 | 62.7 ± 9.2 | former, current, non-smoker | healthy | 423 | 279, 144 | 61.1 ± 8.7 | former, current, non-smoker |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Callejon-Leblic et al. 2016 | – | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Hori et al. 2011 | – | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Roś-Mazurczyk et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Ni et al. 2019 | – | serum | diagnosis | NSCLC, SCLC | II, III, IV | 17 | 13, 4 | 66.3 (53-77) | former, current, non-smoker | healthy | 30 | 23, 7 | 62.8 (34-85) | former, current, non-smoker |
Callejon-Leblic et al. 2019 | – | serum | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Yang et al. 2010 | – | urine | diagnosis | adenocarcinoma, squamous cell carcinoma | – | 35 | 23, 12 | 61.8 ± 13.3, 57.4 ± 9.8 | – | healthy | 32 | 27, 5 | 57.1 ± 9.9 / 45.6 ± 10.8 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Ni et al. 2019 | LC | ESI | positive | triple quadrupole | MS/MS |
Ni et al. 2016 | LC | ESI | positive | Triple quadrupole | MS/MS |
Chen et al. 2015 | LC | ESI | positive | Q-TOF | – |
Chen et al. 2015 | LC | ESI | positive | Q-TOF | – |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Klupczynska et al. 2016a | LC | – | – | QTRAP | MS/MS |
Hori et al. 2011 | GC | – | – | – | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Hori et al. 2011 | GC | – | – | – | – |
Maeda et al. 2010 | LC | ESI | positive | quadrupole | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Hori et al. 2011 | GC | – | – | – | – |
Roś-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | LC | ESI | positive | linear ion-trap | MS/MS |
Ni et al. 2019 | LC | ESI | positive | triple quadrupole | MS/MS |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Yang et al. 2010 | LC | ESI | positive | QTRAP | MS/MS |
Reference | Data processing software | Database search |
Ni et al. 2019 | – | HMDB, KEGG, SMPDB |
Ni et al. 2016 | – | – |
Chen et al. 2015 | Mass Hunter Qualitative Analysis Software (Agilent Technologies) | METLIN |
Chen et al. 2015 | Mass Hunter Qualitative Analysis Software (Agilent Technologies) | METLIN |
Chen et al. 2015 | ChemStation | NIST |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Klupczynska et al. 2016a | – | – |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Maeda et al. 2010 | Xcalibur | – |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Roś-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Ni et al. 2019 | – | HMDB, KEGG, SMPDB |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Yang et al. 2010 | MarkerView | HMDB, KEGG, Pubchem, mass bank |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Ni et al. 2019 | Mann-Whitney U test, Student's t-test, Welch's F test | 136.6 | 165.03 | – | <0.001 | – | – |
Ni et al. 2016 | one‐way ANOVA | 136.60 ± 35.57 μmol/L | 165.62 ± 28.08 μmol/L | – | <0.0001 | – | – |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.50003898928582 | <0.001 | – | 1.418 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.37745004638314 | <0.001 | – | 1.402 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 0.835087919428369 | <0.001 | – | 1.28 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 41243 ± 15012 | 42586 ± 15433 | 0.97 | 0.864 | 0.951 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.04 | 0.807 | – | – |
Klupczynska et al. 2016a | t-test, Welch’s t-test or the Mann-Whitney U test, one-way ANOVA | 233.43±55.25 ?M | 226.97±48.97 ?M | 1.03 | 0.7597 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.06 | 0.581 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 321619.454545455 | 349720.636363636 | 0.919646772605771 | 0.561051969647996 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.05 | 0.553 | – | – |
Maeda et al. 2010 | Mann-Whitney U-test, PCA | 244.8 ± 47.5 μM | 239.8±46.1 μM | – | 0.28 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 84670 ± 27049 | 78685 ± 25425 | 1.076 | 0.229 | 0.524 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 76204 ± 21657 | 81099 ± 18314 | 0.94 | 0.219 | 0.589 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 309110.611111111 | 359573.6 | 0.859658804514879 | 0.0753407571079377 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 85730 ± 20658 | 93604 ± 18189 | 0.92 | 0.056 | 0.31 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.57 | 0.04 | – | 1.87 |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.88 | 0.019 | – | – |
Roś-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 42.645 ± 15.846 | 55.047 ± 29.244 | 0.774701618616818 | 0.017197 | 0.20063 | – |
Mazzone et al. 2016 | two- sample independent t test | 0.9836223± 0.1859707 | 1.0549163± 0.24668 | 0.932417387047674 | 0.0138691 | 0.041500997 | – |
Ni et al. 2019 | Mann-Whitney U test, Student's t-test, Welch's F test | 150.73 | 171.69 | – | 0.009 | – | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 0.53 | 0.001 | – | 1.5 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.20335558915963 | 0.000482680810771471 | 0.00130800540696713 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.3541368919274 | 0.00000131404010660435 | 0.00000328715989050242 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1 | – | 0.846 | – |
Yang et al. 2010 | OSC PLS‐DA | – | – | 1.8 | – | – | 1.47 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Ni et al. 2019 | ROC analysis | – | 0.183 | – | – | – |
Ni et al. 2016 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Klupczynska et al. 2016a | ROC curve analysis (Monte-Carlo cross validation), discriminant function analysis | – | 0.515 | alanine+histidine+ornithine+isoleucine+tryptophan+valine=84.4 | alanine+histidine+ornithine+isoleucine+tryptophan+valine=52.4 | – |
Hori et al. 2011 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Maeda et al. 2010 | ROC curve | – | combination of 21 amino acid: 0.812 | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.66 | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Roś-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Ni et al. 2019 | ROC analysis | – | 0.299 | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.75 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Yang et al. 2010 | – | – | – | – | – | – |