Showing information for HMDB0000207 ('oleate', 'oleate (18:1n9)', 'oleic acid')


Metabolite information

HMDB ID HMDB0000207
Synonyms
18:1 N-9
18:1DElta9cis
9 Octadecenoic acid
9,10-Octadecenoate
9,10-Octadecenoic acid
9-Octadecenoate
9-Octadecenoic acid
9-[Z]-Octadecenoate
9-[Z]-Octadecenoic acid
Acid, 9-octadecenoic
Acid, cis-9-octadecenoic
Acid, oleic
Adipose
Beautification product
Body fat
C18:1 N-9
Cellular membrane
Century CD fatty acid
Coffee
Coffee bean
Csf
Cucurbits
Cytoplasma
Digestion
Distoline
Emersol 210
Emersol 211
Emersol 213
Emersol 220 white oleate
Emersol 220 white oleic acid
Emersol 221 low titer white oleate
Emersol 221 low titer white oleic acid
Emersol 233LL
Emersol 6321
Emersol 6333 NF
Emersol 7021
Extracellular region
Faecal
Faeces
Fat tissue
Fauna
Fecal
Flora
Gdm
Gestational diabetes mellitus
Glycon ro
Glycon wo
Gourds
Gramineae
Industrene 104
Industrene 105
Industrene 205
Industrene 206
L'acide oleique
Legume
Lipid body
Lipid droplet
Lipid metabolic process
Lipid particle
Membrane integrity agent
Membrane stability agent
Metaupon
Octadec-9-enoate
Octadec-9-enoic acid
Oelsaeure
Oelsauere
Oleate
Oleic acid extra pure
Oleinate
Oleinic acid
Pamolyn
Pamolyn 100
Pamolyn 100 FG
Pamolyn 100 FGK
Pamolyn 125
Papilionoideae
Pcp
Personal hygiene
Priolene 6900
Prostate gland
Red oil
Signal transduction
Soy
Soya
Soya bean
Soybean
Stool
Striated muscle
Surface-active agent
Toiletries
Toiletry
Vopcolene 27
Wecoline oo
Z-9-Octadecenoate
Z-9-Octadecenoic acid
[9Z]-9-Octadecenoate
[9Z]-9-Octadecenoic acid
[9Z]-Octadecenoate
[9Z]-Octadecenoic acid
[Z]-9-Octadecanoate
[Z]-9-Octadecanoic acid
[Z]-Octadec-9-enoate
[Z]-Octadec-9-enoic acid
cis 9 Octadecenoic acid
cis-9-Octadecenoate
cis-9-Octadecenoic acid
cis-Delta[9]-Octadecenoic acid
cis-Octadec-9-enoate
cis-Octadec-9-enoic acid
cis-Oleate
cis-Oleic acid
cis-delta[9]-Octadecenoate
cis-δ[9]-octadecenoate
cis-δ[9]-octadecenoic acid
groco 2
groco 4
groco 5l
groco 6
tego-Oleic 130
Chemical formula C18H34O2
IUPAC name
(9Z)-octadec-9-enoic acid
CAS registry number 112-80-1
Monisotopic molecular weight 282.255880332

Chemical taxonomy

Super class Lipids and lipid-like molecules
Class Fatty Acyls
Sub class Fatty acids and conjugates

Biological properties

Pahtways
Author-emphasized biomarker in the paper(s)

Lung cancer metabolomics studies that identify HMDB0000207 ('oleate', 'oleate (18:1n9)', 'oleic acid')


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Chen et al. 2015 serum diagnosis adenocarcinoma, squamous cell carcinoma, large cell carcinoma I, II, III 30 9, 21 61.58 ± 10.67 healthy 30 11, 19 60.35 ± 12.48
Chen et al. 2015 serum diagnosis adenocarcinoma, squamous cell carcinoma, large cell carcinoma I, II, III 30 9, 21 61.58 ± 10.67 before vs. after treatment (operation) 30 9, 21 61.58 ± 10.67
Li et al. 2014 serum diagnosis NSCLC, SCLC 23 12, 11 63.0 ± 9.8 / 59.4 ± 5.8 healthy 23 11, 12 51.0 ± 11.1 / 56.3 ± 14.3
Chen et al. 2015 serum lung cancer 30 61.58 ± 10.67 healthy 30 60.35 ± 12.48
Chen et al. 2015 serum lung cancer 30 61.58 ± 10.67 before vs. after treatment (operation) 30 61.58 ± 10.67
Roś-Mazurczyk et al. 2017 serum diagnosis adenocarcinoma, squamous cell carcinoma I, II, III 31 17, 14 52-72 healthy 92 52, 40 52-73
Moreno et al. 2018 tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Fahrmann et al. 2015 serum diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Miyamoto et al. 2015 blood diagnosis NSCLC, SCLC, mesothelioma, secondary metastasis to lung I, II, III, IV 11 4, 7 67 (61-73) / 67 (47-76) smoker, non-smoker healthy 11 5, 6 69 (61-83) / 54 (44-61) unknown
Fahrmann et al. 2015 plasma diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Miyamoto et al. 2015 blood diagnosis adenocarcinoma unknown (mostly late stage) 18 10, 8 67 (50-85) / 62 (53-72) former, current healthy 20 8, 12 64 (49-80) / 66 (58-82) former, current
Fahrmann et al. 2015 plasma diagnosis adenocarcinoma I, II, III, IV 52 17, 35 65.9 ± 9.66 healthy 31 11, 20 64.1 ± 8.97
Callejon-Leblic et al. 2016 bronchoalveolar lavage fluid diagnosis lung cancer 24 16, 8 66 ± 11 noncancerous lung diseases 31 23, 8 56 ± 13
Callejon-Leblic et al. 2019 bronchoalveolar lavage fluid diagnosis NSCLC, SCLC 24 16, 8 65± 12 former, current noncancerous lung diseases 30 25, 5 55 ± 15 former, current, non-smoker
Fahrmann et al. 2015 serum diagnosis adenocarcinoma I, II, III, IV 49 17, 32 65.9 ± 9.87 healthy 31 11, 20 64.1 ± 8.97
Mazzone et al. 2016 serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Callejón-Leblic et al. 2019 blood diagnosis NSCLC, SCLC II, III, IV 30 25, 5 67 ± 12 former, current, non-smoker healthy 30 14, 16 56 ± 14 former, non-smoker
Moreno et al. 2018 tissue therapy, diagnosis squamous cell carcinoma I, II, III 35 35, 0 68.71 ± 7.46 tumor vs. adjacent normal tissue 35 35, 0 68.71 ± 7.46
Sun et al. 2019 serum diagnosis lung cancer I, II, III, IV 31 21, 10 54.1 ± 9.9  smoker, non-smoker healthy 29 15, 14 52.1 ± 14.6 smoker, non-smoker
Lam et al. 2014 pleural effusion diagnosis NSCLC, SCLC, anaplastic carcinoma 32 13, 19 72.8 ± 11.4 smoker, non-smoker pulmonary tuberculosis 18 10, 8 59.7 ± 25.2  smoker, non-smoker
Wen et al. 2013 plasma diagnosis adenocarcinoma I 31 15, 16 median: 63 (40-81) smoker, non-smoker healthy 28 20, 8 median: 37 (29-50) smoker, non-smoker
Wikoff et al. 2015b tissue diagnosis adenocarcinoma I 39 15, 24 72.33 ± 8.78 smoker, non-smoker tumor vs. adjacent normal tissue 39 15, 24 72.33 ± 8.78 smoker, non-smoker
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Chen et al. 2015 GC
Chen et al. 2015 GC
Li et al. 2014 LC positive, negative Q-TOF MS/MS
Chen et al. 2015 GC EI quadrupole
Chen et al. 2015 GC EI quadrupole
Roś-Mazurczyk et al. 2017 GC TOF In-source fragmentation
Moreno et al. 2018 LC, GC ESI, EI positive, negative LC: linear ion‐trap, GC: single‐quadrupole LC: MS/MS
Fahrmann et al. 2015 GC EI TOF
Miyamoto et al. 2015 GC EI TOF MS/MS
Fahrmann et al. 2015 GC EI TOF
Miyamoto et al. 2015 GC EI TOF MS/MS
Fahrmann et al. 2015 GC EI TOF
Callejon-Leblic et al. 2016 GC EI ion trap
Callejon-Leblic et al. 2019 GC EI ion trap
Fahrmann et al. 2015 GC EI TOF
Mazzone et al. 2016 GC EI quadrupole MS/MS
Callejón-Leblic et al. 2019 DI ESI negative Q-TOF MS/MS
Moreno et al. 2018 LC, GC ESI, EI positive, negative LC: linear ion‐trap, GC: single‐quadrupole LC: MS/MS
Sun et al. 2019 GC
Lam et al. 2014 LC ESI both TripleTOF MS/MS
Wen et al. 2013 LC ESI Q-TOF MS/MS
Wikoff et al. 2015b GC EI TOF
Reference Data processing software Database search
Chen et al. 2015 GC/MSD ChemStation software (Agilent Technologies) NIST
Chen et al. 2015 GC/MSD ChemStation software (Agilent Technologies) NIST
Li et al. 2014 MarkerLynx METLIN, HMDB, KEGG
Chen et al. 2015 ChemStation NIST
Chen et al. 2015 ChemStation NIST
Roś-Mazurczyk et al. 2017 Leco ChromaTOF-GC Replib, Mainlib and Fiehn libraries
Moreno et al. 2018 KEGG, HMDB
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Callejon-Leblic et al. 2016 XCMS NIST Mass Spectral Library
Callejon-Leblic et al. 2019 XCMS NIST Mass Spectral Library
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Callejón-Leblic et al. 2019 HMDB, Metlin
Moreno et al. 2018 KEGG, HMDB
Sun et al. 2019 BinBase, KEGG
Lam et al. 2014 PeakView, LipidView (AB SCIEX), XCMS HMDB
Wen et al. 2013 MassHunter, Mass Profiler Professional software (Agilent) NIST 08, HMDB, METLIN, LIPID MAPS
Wikoff et al. 2015b BinBase NIST11, BinBase
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Chen et al. 2015 independent t-test 605.66 ± 361.44 244.99 ± 131.32 <0.001
Chen et al. 2015 independent t-test 605.66 ± 361.44 346.58 ± 164.66 <0.001
Li et al. 2014 PCA, PLS-DA, OSC-PLS-DA, student’s t-test < 0.05 7.4
Chen et al. 2015 PCA, PLS-DA, independent t test 2.46228882668983 <0.001 1.72
Chen et al. 2015 PCA, PLS-DA, independent t test 1.75321144263207 <0.001 1.29
Roś-Mazurczyk et al. 2017 two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach 3.8226 ± 2.6189 4.8695 ± 5.9457 0.785008727795462 0.79322 0.85012
Moreno et al. 2018 paired two‐sample t‐test, PLS-DA 1.02863728236301 0.694134431432686 0.728333730939441
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 4121 ± 2227 4224 ± 2850 0.976 0.649 0.892
Miyamoto et al. 2015 Analysis of Covariance 12571.4545454545 11845.1818181818 1.06131376777669 0.319754538300005
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 2557 ± 1453 2335 ± 1796 1.1 0.277 0.573
Miyamoto et al. 2015 Analysis of Covariance 15337.9444444444 9391.95 1.63309477205952 0.126596215928545
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 3919 ± 2555 2543 ± 1869 1.54 0.063 0.395
Callejon-Leblic et al. 2016 PLS-LDA, one-way ANOVA 0.78 0.023 1.45
Callejon-Leblic et al. 2019 PLS-LDA, one-way ANOVA 0.78 0.023 1.45
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 3836 ± 2605 2283 ± 1541 1.68 0.02 0.208
Mazzone et al. 2016 two- sample independent t test 1.292579± 0.6680247 1.065943± 0.7456325 1.21261549632579 0.0131417 0.040458542
Callejón-Leblic et al. 2019 PCA, PLS-DA, one-way ANOVA 1.68 0.012 1.48
Moreno et al. 2018 paired two‐sample t‐test, PLS-DA 1.39276048080439 0.0000287262750385473 0.0000574525500770946
Sun et al. 2019 Student t test, PLS-DA 2.20331077465311 0.00000895 0.000151 0.73145
Lam et al. 2014 t-test, OPLS-DA 0.0000000823
Wen et al. 2013 Mann–Whitney–Wilcoxon test, OPLS-DA 15.6707247613908 0.000000000245 1.28
Wikoff et al. 2015b OPLS-DA 1.1 0.663
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Chen et al. 2015 ROC curve analysis 402.22 0.749 (0.614-0.884) 70 86.67
Chen et al. 2015 ROC curve analysis 489.02 0.694 (0.550–0.838) 60 80
Li et al. 2014 ROC curve analysis
Chen et al. 2015
Chen et al. 2015
Roś-Mazurczyk et al. 2017 ROC curve
Moreno et al. 2018
Fahrmann et al. 2015 random forest
Miyamoto et al. 2015
Fahrmann et al. 2015 random forest
Miyamoto et al. 2015
Fahrmann et al. 2015 random forest
Callejon-Leblic et al. 2016 ROC curve analysis 0.54
Callejon-Leblic et al. 2019 ROC curve analysis 0.54
Fahrmann et al. 2015 random forest
Mazzone et al. 2016
Callejón-Leblic et al. 2019 ROC curve 0.64
Moreno et al. 2018
Sun et al. 2019 ROC curve analysis
Lam et al. 2014 ROC curve analysis 0.866–0.996 84.4 100
Wen et al. 2013 ROC curve analysis 0.98
Wikoff et al. 2015b