Metabolite information |
|
HMDB ID | HMDB0000207 |
Synonyms |
18:1 N-918:1DElta9cis9 Octadecenoic acid9,10-Octadecenoate9,10-Octadecenoic acid9-Octadecenoate9-Octadecenoic acid9-[Z]-Octadecenoate9-[Z]-Octadecenoic acidAcid, 9-octadecenoicAcid, cis-9-octadecenoicAcid, oleicAdiposeBeautification productBody fatC18:1 N-9Cellular membraneCentury CD fatty acidCoffeeCoffee beanCsfCucurbitsCytoplasmaDigestionDistolineEmersol 210Emersol 211Emersol 213Emersol 220 white oleateEmersol 220 white oleic acidEmersol 221 low titer white oleateEmersol 221 low titer white oleic acidEmersol 233LLEmersol 6321Emersol 6333 NFEmersol 7021Extracellular regionFaecalFaecesFat tissueFaunaFecalFloraGdmGestational diabetes mellitusGlycon roGlycon woGourdsGramineaeIndustrene 104Industrene 105Industrene 205Industrene 206L'acide oleiqueLegumeLipid bodyLipid dropletLipid metabolic processLipid particleMembrane integrity agentMembrane stability agentMetauponOctadec-9-enoateOctadec-9-enoic acidOelsaeureOelsauereOleateOleic acid extra pureOleinateOleinic acidPamolynPamolyn 100Pamolyn 100 FGPamolyn 100 FGKPamolyn 125PapilionoideaePcpPersonal hygienePriolene 6900Prostate glandRed oilSignal transductionSoySoyaSoya beanSoybeanStoolStriated muscleSurface-active agentToiletriesToiletryVopcolene 27Wecoline ooZ-9-OctadecenoateZ-9-Octadecenoic acid[9Z]-9-Octadecenoate[9Z]-9-Octadecenoic acid[9Z]-Octadecenoate[9Z]-Octadecenoic acid[Z]-9-Octadecanoate[Z]-9-Octadecanoic acid[Z]-Octadec-9-enoate[Z]-Octadec-9-enoic acidcis 9 Octadecenoic acidcis-9-Octadecenoatecis-9-Octadecenoic acidcis-Delta[9]-Octadecenoic acidcis-Octadec-9-enoatecis-Octadec-9-enoic acidcis-Oleatecis-Oleic acidcis-delta[9]-Octadecenoatecis-δ[9]-octadecenoatecis-δ[9]-octadecenoic acidgroco 2groco 4groco 5lgroco 6tego-Oleic 130 |
Chemical formula | C18H34O2 |
IUPAC name | (9Z)-octadec-9-enoic acid |
CAS registry number | 112-80-1 |
Monisotopic molecular weight | 282.255880332 |
Chemical taxonomy |
|
Super class | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Sub class | Fatty acids and conjugates |
Biological properties |
|
Pahtways |
|
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Chen et al. 2015 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, large cell carcinoma | I, II, III | 30 | 9, 21 | 61.58 ± 10.67 | – | healthy | 30 | 11, 19 | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, large cell carcinoma | I, II, III | 30 | 9, 21 | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | 9, 21 | 61.58 ± 10.67 | – |
Li et al. 2014 | – | serum | diagnosis | NSCLC, SCLC | – | 23 | 12, 11 | 63.0 ± 9.8 / 59.4 ± 5.8 | – | healthy | 23 | 11, 12 | 51.0 ± 11.1 / 56.3 ± 14.3 | – |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Roś-Mazurczyk et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Callejon-Leblic et al. 2016 | – | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Callejon-Leblic et al. 2019 | – | bronchoalveolar lavage fluid | diagnosis | NSCLC, SCLC | – | 24 | 16, 8 | 65± 12 | former, current | noncancerous lung diseases | 30 | 25, 5 | 55 ± 15 | former, current, non-smoker |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Callejón-Leblic et al. 2019 | – | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Sun et al. 2019 | – | serum | diagnosis | lung cancer | I, II, III, IV | 31 | 21, 10 | 54.1 ± 9.9 | smoker, non-smoker | healthy | 29 | 15, 14 | 52.1 ± 14.6 | smoker, non-smoker |
Lam et al. 2014 | – | pleural effusion | diagnosis | NSCLC, SCLC, anaplastic carcinoma | – | 32 | 13, 19 | 72.8 ± 11.4 | smoker, non-smoker | pulmonary tuberculosis | 18 | 10, 8 | 59.7 ± 25.2 | smoker, non-smoker |
Wen et al. 2013 | – | plasma | diagnosis | adenocarcinoma | I | 31 | 15, 16 | median: 63 (40-81) | smoker, non-smoker | healthy | 28 | 20, 8 | median: 37 (29-50) | smoker, non-smoker |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Chen et al. 2015 | GC | – | – | – | – |
Chen et al. 2015 | GC | – | – | – | – |
Li et al. 2014 | LC | – | positive, negative | Q-TOF | MS/MS |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Roś-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2016 | GC | EI | – | ion trap | – |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Callejón-Leblic et al. 2019 | DI | ESI | negative | Q-TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Sun et al. 2019 | GC | – | – | – | – |
Lam et al. 2014 | LC | ESI | both | TripleTOF | MS/MS |
Wen et al. 2013 | LC | ESI | – | Q-TOF | MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Chen et al. 2015 | GC/MSD ChemStation software (Agilent Technologies) | NIST |
Chen et al. 2015 | GC/MSD ChemStation software (Agilent Technologies) | NIST |
Li et al. 2014 | MarkerLynx | METLIN, HMDB, KEGG |
Chen et al. 2015 | ChemStation | NIST |
Chen et al. 2015 | ChemStation | NIST |
Roś-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Moreno et al. 2018 | – | KEGG, HMDB |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Callejon-Leblic et al. 2016 | XCMS | NIST Mass Spectral Library |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Callejón-Leblic et al. 2019 | – | HMDB, Metlin |
Moreno et al. 2018 | – | KEGG, HMDB |
Sun et al. 2019 | – | BinBase, KEGG |
Lam et al. 2014 | PeakView, LipidView (AB SCIEX), XCMS | HMDB |
Wen et al. 2013 | MassHunter, Mass Profiler Professional software (Agilent) | NIST 08, HMDB, METLIN, LIPID MAPS |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Chen et al. 2015 | independent t-test | 605.66 ± 361.44 | 244.99 ± 131.32 | – | <0.001 | – | – |
Chen et al. 2015 | independent t-test | 605.66 ± 361.44 | 346.58 ± 164.66 | – | <0.001 | – | – |
Li et al. 2014 | PCA, PLS-DA, OSC-PLS-DA, student’s t-test | – | – | – | < 0.05 | – | 7.4 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 2.46228882668983 | <0.001 | – | 1.72 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.75321144263207 | <0.001 | – | 1.29 |
Roś-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 3.8226 ± 2.6189 | 4.8695 ± 5.9457 | 0.785008727795462 | 0.79322 | 0.85012 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.02863728236301 | 0.694134431432686 | 0.728333730939441 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 4121 ± 2227 | 4224 ± 2850 | 0.976 | 0.649 | 0.892 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 12571.4545454545 | 11845.1818181818 | 1.06131376777669 | 0.319754538300005 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 2557 ± 1453 | 2335 ± 1796 | 1.1 | 0.277 | 0.573 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 15337.9444444444 | 9391.95 | 1.63309477205952 | 0.126596215928545 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3919 ± 2555 | 2543 ± 1869 | 1.54 | 0.063 | 0.395 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.78 | 0.023 | – | 1.45 |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 0.78 | 0.023 | – | 1.45 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3836 ± 2605 | 2283 ± 1541 | 1.68 | 0.02 | 0.208 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.292579± 0.6680247 | 1.065943± 0.7456325 | 1.21261549632579 | 0.0131417 | 0.040458542 | – |
Callejón-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.68 | 0.012 | – | 1.48 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.39276048080439 | 0.0000287262750385473 | 0.0000574525500770946 | – |
Sun et al. 2019 | Student t test, PLS-DA | – | – | 2.20331077465311 | 0.00000895 | 0.000151 | 0.73145 |
Lam et al. 2014 | t-test, OPLS-DA | – | – | – | 0.0000000823 | – | – |
Wen et al. 2013 | Mann–Whitney–Wilcoxon test, OPLS-DA | – | – | 15.6707247613908 | 0.000000000245 | – | 1.28 |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.1 | – | 0.663 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Chen et al. 2015 | ROC curve analysis | 402.22 | 0.749 (0.614-0.884) | 70 | 86.67 | – |
Chen et al. 2015 | ROC curve analysis | 489.02 | 0.694 (0.550–0.838) | 60 | 80 | – |
Li et al. 2014 | ROC curve analysis | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Roś-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.54 | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.54 | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Callejón-Leblic et al. 2019 | ROC curve | – | 0.64 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Sun et al. 2019 | ROC curve analysis | – | – | – | – | – |
Lam et al. 2014 | ROC curve analysis | – | 0.866–0.996 | 84.4 | 100 | – |
Wen et al. 2013 | ROC curve analysis | – | 0.98 | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |