Metabolite information |
|
HMDB ID | HMDB0000904 |
Synonyms |
2-amino-5-Uredovalerate2-amino-5-Uredovaleric acid2-amino-5-Ureidovalerate2-amino-5-Ureidovaleric acidCIRCitCsfCucurbitsCytoplasmaCytrullineD-UreidonorvalineDL-CitrullineDietary supplementDigestionEpileptic spasmsEssential mineralFaecalFaecesFaunaFecalFloraGammaureidonorvalineGourdsGramineaeH-Cit-OHHyperammonemia iiiKidneysL-2-amino-5-UreidovalerateL-2-amino-5-Ureidovaleric acidL-2-amino-5-ureido-ValerateL-2-amino-5-ureido-Valeric acidL-CitrullineL-CytrullineL-N5-Carbamoyl-ornithineL[+]-2-amino-5-UreidovalerateL[+]-2-amino-5-Ureidovaleric acidL[+]-CitrullineLegumeMyelinN-CarbamylornithineN5-Carbamoyl-L-ornithineN5-CarbamoylornithineN5-CarbamylornithineN5-[Aminocarbonyl]-L-ornithineN5-[Aminocarbonyl]-ornithineN5-[Aminocarbonyl]ornithineND-CarbamylornithineN[5]-[Aminocarbonyl]-DL-ornithineN[5]-[Aminocarbonyl]-L-ornithineN[]-CarbamylornithineN[delta]-CarbamylornithineN[δ]-carbamylornithineNags deficiencyNdelta-carbamy-ornithineNdelta-carbamylornithineNeuronNgamma-carbamylornithineNutraceuticalPapilionoideaeProstate glandSitrullineSoySoyaSoya beanSoybeanStoolThrombocyteTrace mineralUreidonorvalineUreidovalerateUreidovaleric acid[2S]-2-amino-5-[carbamoylamino]Pentanoate[2S]-2-amino-5-[carbamoylamino]Pentanoic acid[S]-2-amino-5-Ureidopentanoate[S]-2-amino-5-Ureidopentanoic acid[S]-2-amino-5-[Aminocarbonyl]aminopentanoate[S]-2-amino-5-[Aminocarbonyl]aminopentanoic acida-amino-D-Ureidovaleratea-amino-D-Ureidovaleric acida-amino-delta-Ureidovaleratea-amino-delta-Ureidovaleric acida-amino-δ-ureidovaleratea-amino-δ-ureidovaleric acidalpha-amino-delta-Ureidovaleratealpha-amino-delta-Ureidovaleric acidalpha-amino-gamma-Ureidovaleratealpha-amino-gamma-Ureidovaleric acidamino-Ureidovalerateamino-Ureidovaleric aciddelta-Ureidonorvalineα-amino-δ-ureidovalerateα-amino-δ-ureidovaleric acidδ-ureidonorvaline |
Chemical formula | C6H13N3O3 |
IUPAC name | (2S)-2-amino-5-(carbamoylamino)pentanoic acid |
CAS registry number | 372-75-8 |
Monisotopic molecular weight | 175.095691297 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pahtways |
Arginine and Proline MetabolismArginine: Glycine Amidinotransferase Deficiency [AGAT Deficiency]ArgininemiaArgininosuccinic AciduriaAspartate MetabolismCanavan DiseaseCarbamoyl Phosphate Synthetase DeficiencyCitrullinemia Type ICreatine deficiency, guanidinoacetate methyltransferase deficiencyGuanidinoacetate Methyltransferase Deficiency [GAMT Deficiency]Hyperornithinemia with gyrate atrophy [HOGA]Hyperornithinemia-hyperammonemia-homocitrullinuria [HHH-syndrome]Hyperprolinemia Type IHyperprolinemia Type IIHypoacetylaspartiaL-arginine:glycine amidinotransferase deficiencyOrnithine Aminotransferase Deficiency [OAT Deficiency]Ornithine Transcarbamylase Deficiency [OTC Deficiency]Prolidase Deficiency [PD]Prolinemia Type IIUrea Cycle |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Ni et al. 2019 | – | serum | diagnosis | lung cancer | – | 40 | 26, 14 | 66.7 (49-83) | – | healthy | 100 | 65, 35 | 64.1 (41-90) | – |
Ni et al. 2016 | – | serum | diagnosis | lung cancer | – | 40 | 14, 26 | 67 | – | healthy | 100 | – | – | – |
Mu et al. 2019 | – | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Maeda et al. 2010 | – | plasma | – | NSCLC | I, II, III, IV | 141 | 93, 48 | 62.7 ± 9.2 | former, current, non-smoker | healthy | 423 | 279, 144 | 61.1 ± 8.7 | former, current, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Roś-Mazurczyk et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Yue et al. 2018 | – | plasma | diagnosis | SCLC | – | 20 | – | – | – | healthy | 20 | – | – | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Klupczynska et al. 2016a | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 90 | 58, 32 | 64 (48-86) | current, non-smoker, unknown | healthy | 63 | 41, 22 | 62 (43-78) | smoker, non-smoker, unknown |
Ni et al. 2019 | – | serum | diagnosis | NSCLC, SCLC | II, III, IV | 17 | 13, 4 | 66.3 (53-77) | former, current, non-smoker | healthy | 30 | 23, 7 | 62.8 (34-85) | former, current, non-smoker |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Ni et al. 2019 | LC | ESI | positive | triple quadrupole | MS/MS |
Ni et al. 2016 | LC | ESI | positive | Triple quadrupole | MS/MS |
Mu et al. 2019 | GC | – | – | – | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Maeda et al. 2010 | LC | ESI | positive | quadrupole | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Mazzone et al. 2016 | LC | ESI | positive | linear ion-trap | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Roś-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Yue et al. 2018 | LC | ESI | positive, negative | QTRAP | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Klupczynska et al. 2016a | LC | – | – | QTRAP | MS/MS |
Ni et al. 2019 | LC | ESI | positive | triple quadrupole | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Ni et al. 2019 | – | HMDB, KEGG, SMPDB |
Ni et al. 2016 | – | – |
Mu et al. 2019 | – | – |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Maeda et al. 2010 | Xcalibur | – |
Moreno et al. 2018 | – | KEGG, HMDB |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Roś-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Yue et al. 2018 | Analyst, MultiQuant | – |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Klupczynska et al. 2016a | – | – |
Ni et al. 2019 | – | HMDB, KEGG, SMPDB |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Ni et al. 2019 | Mann-Whitney U test, Student's t-test, Welch's F test | 23.41 | 40.8 | – | <0.001 | – | – |
Ni et al. 2016 | one‐way ANOVA | 23.41 ± 10.00 μmol/L | 42.14 ± 12.77 μmol/L | – | <0.0001 | – | – |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.684 | < 0.001 | < 0.001 | 1.457 |
Miyamoto et al. 2015 | Analysis of Covariance | 6277.66666666667 | 5999.2 | 1.04641730008446 | 0.758606079008397 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 892 ± 388 | 999 ± 671 | 0.89 | 0.38 | 0.672 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.893693885914484 | 0.330100647939372 | 0.368420023854012 | – |
Maeda et al. 2010 | Mann-Whitney U-test, PCA | 34.4 ± 10.6 μM | 33.2±8.3 μM | – | 0.2 | – | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.865745931011288 | 0.160796444401297 | 0.216818340267796 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.016207± 0.4586533 | 1.104633± 0.439792 | 0.919949883807563 | 0.1167183 | 0.209727511 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 5684.18181818182 | 6578.27272727273 | 0.864084244275231 | 0.115016549334893 | – | – |
Roś-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.6485 ± 0.50829 | 0.78608 ± 0.4787 | 0.824979645837574 | 0.034879 | 0.2424 | – |
Yue et al. 2018 | OPLS-DA, student’s t-test | 735.70±238.92 ng/mL | 394.84±95.35 ng/mL | 2.39495740923786 | 0.031 | – | 1.01 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 733 ± 340 | 860 ± 278 | 0.851 | 0.02 | 0.157 | – |
Klupczynska et al. 2016a | t-test, Welch’s t-test or the Mann-Whitney U test, one-way ANOVA | 26.13±10.23 ?M | 28.1±8.25 ?M | 0.93 | 0.0192 | – | – |
Ni et al. 2019 | Mann-Whitney U test, Student's t-test, Welch's F test | 32 | 37.12 | – | 0.01 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 359 ± 191 | 461 ± 169 | 0.78 | 0.003 | 0.037 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 471 ± 183 | 632 ± 280 | 0.75 | 0 | 0.011 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.5 | – | 0.004 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Ni et al. 2019 | ROC analysis | – | 0.103 | – | – | – |
Ni et al. 2016 | – | – | – | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Maeda et al. 2010 | ROC curve | – | combination of 21 amino acid: 0.812 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Roś-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Yue et al. 2018 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Klupczynska et al. 2016a | ROC curve analysis (Monte-Carlo cross validation), discriminant function analysis | – | 0.611 | β-alanine+histidine+citrulline+asparagine+phenylalanine+aspartic acid=82.2 | β-alanine+histidine+citrulline+asparagine+phenylalanine+aspartic acid=69.8 | – |
Ni et al. 2019 | ROC analysis | – | 0.277 | – | – | – |
Fahrmann et al. 2015 | random forest | – | maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=0.699 (0.583, 0.815) maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline+pyrophosphate+tryptophan+adenosine-5-Phosphate=0.670 (0.552, 0.789) | 55.8 maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=65.1 | 76.7 maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=81.4 | 66.3 |
Fahrmann et al. 2015 | random forest | – | maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=0.880 (0.805, 0.954) maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline+pyrophosphate+tryptophan+adenosine-5-Phosphate=0.883 (0.812, 0.955) | – | – | 67.5 maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=79.5 |
Wikoff et al. 2015b | – | – | – | – | – | – |