Metabolite information |
|
HMDB ID | HMDB0000292 |
Synonyms |
1H-Purine-2,6-diol2,6-Dihydroxypurine2,6-Dioxopurine2,6-dioxo-1,2,3,6-Tetrahydropurine2,6[1,3]-Purinedion3,7-Dihydropurine-2,6-dione3,7-dihydro-1H-Purine-2,6-dione9H-Purine-2,6-[1H,3H]-dione9H-Purine-2,6-diol9H-Purine-2,6[1H,3H]-dioneBladder calculiBladder stonesCoffeeCoffee beanCsfCucurbitsCutaneous [related but nor necessarily exact synonym]CystolithsCytoplasmaDddDigestionDioxopurineEskfEsrfFaecalFaecesFaunaFecalFloraGourdsGramineaeHypoxanthin guanine phosphoribosyl transferaseIsoxanthineKelley-seegmiller syndromeKidney failureKidneysLegumeLnsNyhan's syndromePapilionoideaePeroxisomalPeroxisome vesicleProstate glandPseudoxanthinePurine-2,6-diolPurine-2,6[1H,3H]-dionePurine-2[3H],6[1H]-dioneSkin contactSoySoyaSoya beanSoybeanStoolStriated muscleTestesTestisTopicalTransdermalUrinary bladder calculiXanXanthic oxideXanthinXanthine dehydrogenase deficiencyXanthine oxidase deficiencyXanthinuriaXdh deficiency |
Chemical formula | C5H4N4O2 |
IUPAC name | 2,3,6,7-tetrahydro-1H-purine-2,6-dione |
CAS registry number | 69-89-6 |
Monisotopic molecular weight | 152.033425392 |
Chemical taxonomy |
|
Super class | Organoheterocyclic compounds |
Class | Imidazopyrimidines |
Sub class | Purines and purine derivatives |
Biological properties |
|
Pahtways |
AICA-RibosiduriaAdenine phosphoribosyltransferase deficiency [APRT]Adenosine Deaminase DeficiencyAdenylosuccinate Lyase DeficiencyAzathioprine Action PathwayGout or Kelley-Seegmiller SyndromeLesch-Nyhan Syndrome [LNS]Mercaptopurine Action PathwayMitochondrial DNA depletion syndromeMolybdenum Cofactor DeficiencyMyoadenylate deaminase deficiencyPurine MetabolismPurine Nucleoside Phosphorylase DeficiencyThioguanine Action PathwayXanthine Dehydrogenase Deficiency [Xanthinuria]Xanthinuria type IXanthinuria type II |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Mu et al. 2019 | – | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Callejón-Leblic et al. 2019 | – | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Yue et al. 2018 | – | plasma | diagnosis | SCLC | – | 20 | – | – | – | healthy | 20 | – | – | – |
Huang et al. 2019 | – | plasma | diagnosis | lung cancer | – | 31 | 19, 12 | 28-64 | – | healthy | 35 | 24, 11 | 23-60 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Chen et al. 2018 | – | serum | diagnosis | NSCLC | I, II | 90 | 40, 50 | 58.1 ± 9.0 | – | healthy | 90 | 42, 48 | 53.0 ± 11.8 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Mu et al. 2019 | GC | – | – | – | – |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Callejón-Leblic et al. 2019 | DI | ESI | negative | Q-TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Yue et al. 2018 | LC | ESI | positive, negative | QTRAP | MS/MS |
Huang et al. 2019 | LC | ESI | negative | Q-Orbitrap | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Chen et al. 2018 | LC | ESI | negative | Q-TOF | MS/MS |
Reference | Data processing software | Database search |
Mu et al. 2019 | – | – |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Callejón-Leblic et al. 2019 | – | HMDB, Metlin |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Yue et al. 2018 | Analyst, MultiQuant | – |
Huang et al. 2019 | XCMS | OSI-SMMS |
Moreno et al. 2018 | – | KEGG, HMDB |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Chen et al. 2018 | Analyst TF, XCMS | in-house |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.249 | < 0.001 | < 0.001 | 1.615 |
Mazzone et al. 2016 | two- sample independent t test | 1.094821± 0.5015046 | 1.083551± 1.0811354 | 1.01040098712474 | 0.9234785 | 0.804216432 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 438.636363636364 | 541.818181818182 | 0.809563758389262 | 0.178638035221322 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 79 ± 37 | 69 ± 32 | 1.16 | 0.132 | 0.516 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 571.722222222222 | 417.15 | 1.37054350287 | 0.108835510947556 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 57 ± 16 | 49 ± 12 | 1.17 | 0.024 | 0.127 | – |
Callejón-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.86 | 0.022 | – | 1.83 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 145 ± 47 | 121 ± 39 | 1.2 | 0.009 | 0.09 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 169 ± 66 | 128 ± 43 | 1.32 | 0.005 | 0.117 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.50110111263995 | 0.00107060011419359 | 0.00270111178236198 | – |
Yue et al. 2018 | OPLS-DA, student’s t-test | 10.84±4.51 ng/mL | 16.48±4.84 ng/mL | 4 | 0.00031 | – | 1.33 |
Huang et al. 2019 | OPLS-DA, Mann-Whitney U test | – | – | 0.797313073 | 0.000000312694 | – | 1.894062845 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 2.70281561125291 | 0.00000000000299503337906127 | 0.0000000000287956221263963 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 2.7 | – | 0.00038 | – |
Chen et al. 2018 | PCA, OPLS-DA | – | – | 0.52 | – | – | 1.29 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Mu et al. 2019 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Callejón-Leblic et al. 2019 | ROC curve | – | 0.52 | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Yue et al. 2018 | – | – | – | – | – | – |
Huang et al. 2019 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Chen et al. 2018 | ROC curve | – | 0.264 (0.191–0.337) | 77.8 | 60 | – |