Metabolite information |
|
HMDB ID | HMDB0000122 |
Synonyms |
3-methylcrotonyl-coa carboxylase deficiency3-methylcrotonylglycinuria type 13mcc deficiencyAdiposeAdult-onset diabetesAerobic glycolysisAmlAnhydrous dextroseAtherosclerotic heart diseaseBeta-methylcrotonyl-coenzyme a carboxylase deficiencyBmcc deficiencyBody fatBuccal cavityCPC HydrateCadCerebrovascular accidentCerebrovascular insultCereloseCerelose 2001Chronic adrenal insufficiencyChronic renal diseaseCkdClearsweet 95Clintose LCoffeeCoffee beanCorn sugarCsfCucurbitsCvaCviD GlucoseD-GLCD-GLCPD[+]-GlucoseDextropurDextroseDextrose, anhydrousDextrosolDigestionDyslipidemiaErExtracellular regionFaecalFaecesFat tissueFaunaFecalFloraGLC-OHGdmGestational diabetes mellitusGhdGlucodinGlucolinGlucoseGlucose monohydrateGlucose, [DL]-isomerGlucose, [L]-isomerGlucose, [alpha-D]-isomerGlucose, [beta-D]-isomerGoldsugarGolgi apparatusGolgi complexGolgi ribbonGourdsGramineaeGrape sugarHyperlipidaemiaHyperlipoproteinemiaHypocorticismHypocortisolismHypoglykemia due to glucagon deficiencyKidneysL GlucoseL-GlucoseLegumeLungsMeritoseMonohydrate, glucoseMyelinNephropathyNeuronNiddmNon-insulin-dependent diabetes mellitusOralOral cavityPadPaodPapilionoideaePeripheral arterial diseasePeripheral artery diseasePeripheral artery occlusive diseaseProstate glandPvdRenal diseaseRoferose STSoySoyaSoya beanSoybeanStaleydex 111Staleydex 95mStoolTabfine 097[HS]Vadex[+]-Glucose |
Chemical formula | C6H12O6 |
IUPAC name | (3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol |
CAS registry number | 50-99-7 |
Monisotopic molecular weight | 180.063388116 |
Chemical taxonomy |
|
Super class | Organic oxygen compounds |
Class | Organooxygen compounds |
Sub class | Carbohydrates and carbohydrate conjugates |
Biological properties |
|
Pahtways |
Congenital disorder of glycosylation CDG-IIdFabry diseaseFanconi-bickel syndromeFructose-1,6-diphosphatase deficiencyGLUT-1 deficiency syndromeGalactose MetabolismGalactosemiaGaucher DiseaseGlibenclamide Action PathwayGliclazide Action PathwayGloboid Cell LeukodystrophyGluconeogenesisGlucose-Alanine CycleGlycogen Storage Disease Type 1A [GSD1A] or Von Gierke DiseaseGlycogenosis, Type IA. Von gierke diseaseGlycogenosis, Type IBGlycogenosis, Type ICGlycogenosis, Type VII. Tarui diseaseGlycolysisInsulin SignallingKrabbe diseaseLactose DegradationLactose IntoleranceLactose SynthesisMetachromatic Leukodystrophy [MLD]Nateglinide Action PathwayPancreas FunctionPhosphoenolpyruvate carboxykinase deficiency 1 [PEPCK1]Repaglinide Action PathwaySphingolipid MetabolismTransfer of Acetyl Groups into MitochondriaTriosephosphate isomeraseWarburg Effect |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Roś-Mazurczyk et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Hori et al. 2011 | – | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Musharraf et al. 2015 | – | plasma | – | adenocarcinoma, squamous cell carcinoma, NSCLC, SCLC, lung cancer | I, II, III | 96 | – | – | – | healthy, COPD | 384 | – | – | – |
Callejon-Leblic et al. 2019 | – | serum | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Callejón-Leblic et al. 2019 | – | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Roś-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Musharraf et al. 2015 | GC | EI | – | triple quadrupole | – |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Callejón-Leblic et al. 2019 | DI | ESI | positive | Q-TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Chen et al. 2015 | ChemStation | NIST |
Chen et al. 2015 | ChemStation | NIST |
Roś-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Musharraf et al. 2015 | Agilent Mass Hunter Qualitative Analysis, Mass Hunter | Wiley registry NIST 11, Fiehn RTL libraries |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Callejón-Leblic et al. 2019 | – | HMDB, Metlin |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.31039340385836 | <0.001 | – | 1.14 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.53687518128801 | <0.001 | – | 1.61 |
Roś-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 400.5 ± 198.36 | 413.3 ± 220.6 | 0.969029760464554 | 0.74647 | 0.8487 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.021545± 0.1987323 | 1.007043± 0.2346031 | 1.01440057673803 | 0.6069514 | 0.642010476 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 610872.636363636 | 630890.090909091 | 0.968271090584716 | 0.523434850323184 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 650817.777777778 | 593938.65 | 1.09576599835316 | 0.422387074170335 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 155035 ± 97076 | 194159 ± 137046 | 0.8 | 0.152 | 0.529 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 167237 ± 121193 | 199282 ± 136738 | 0.84 | 0.122 | 0.457 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 2.23 | 0.062 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 54600 ± 24166 | 60898 ± 22497 | 0.9 | 0.062 | 0.222 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 80945 ± 29796 | 91479 ± 31954 | 0.885 | 0.022 | 0.162 | – |
Musharraf et al. 2015 | one way ANOVA, Turkey’s honest Significance Difference | – | – | 111939.524579634 | 0.001 | – | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 2.29 | 0.001 | – | 2.74 |
Callejón-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.62 | 0.0005 | – | 1.73 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.6439387177875 | 0.0000582827335532788 | 0.000215969611547968 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.686209597952584 | 0.0000015526591806776 | 0.00000381237546517146 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 2 | – | 0.00037 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Chen et al. 2015 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Roś-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Musharraf et al. 2015 | Hierarchical clustering, Partial Least Square Discrimination | – | – | 96.2 | 92 | 93.1 |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.82 | – | – | – |
Callejón-Leblic et al. 2019 | ROC curve | – | 0.65 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |