Metabolite information |
|
HMDB ID | HMDB0000517 |
Synonyms |
2-amino-5-Guanidinovalerate2-amino-5-Guanidinovaleric acid5-[[Aminoiminomethyl]amino]-L-norvalineAdiposeAnephric patientsArgArginase deficiencyArginineArginine hydrochlorideArginine, L isomerArginine, L-isomerBeautification productBody fatChronic kidney failureCkfCoffeeCoffee beanCsfCucurbitsCytoplasmaDL Arginine acetate, monohydrateDL-Arginine acetate, monohydrateDibasic aminoaciduria iDietary supplementDigestionEnd-stage renal diseaseEskdEsrdEssential mineralExtracellular regionFaecalFaecesFamilial protein intoleranceFat tissueFaunaFecalFloraGourdsGramineaeHfHydrochloride, arginineHyperdibasic aminoaciduria type 2KidneysL ArginineL-ArgL-ArgininL-Isomer arginineL-[+]-ArginineL-a-amino-D-GuanidinovalerateL-a-amino-D-Guanidinovaleric acidL-alpha-amino-delta-GuanidinovalerateL-alpha-amino-delta-Guanidinovaleric acidLegumeLeukaemiaLpiMonohydrate DL-arginine acetateMyelinN5-[Aminoiminomethyl]-L-ornithineNeuronNutraceuticalPapilionoideaePcpPersonal hygieneProstate glandRSemi-essential amino acidSoySoyaSoya beanSoybeanStage 5 chronic kidney diseaseStage 5 ckdStoolStriated muscleTestesTestisThrombocyteToiletriesToiletryTrace mineral[2S]-2-amino-5-Guanidinopentanoate[2S]-2-amino-5-Guanidinopentanoic acid[2S]-2-amino-5-[carbamimidamido]Pentanoate[2S]-2-amino-5-[carbamimidamido]Pentanoic acid[S]-2-amino-5-Guanidinopentanoate[S]-2-amino-5-Guanidinopentanoic acid[S]-2-amino-5-Guanidinovalerate[S]-2-amino-5-Guanidinovaleric acid[S]-2-amino-5-[[Aminoiminomethyl]amino]-pentanoate[S]-2-amino-5-[[Aminoiminomethyl]amino]-pentanoic acid[S]-2-amino-5-[[Aminoiminomethyl]amino]pentanoate[S]-2-amino-5-[[Aminoiminomethyl]amino]pentanoic acid |
Chemical formula | C6H14N4O2 |
IUPAC name | (2S)-2-amino-5-carbamimidamidopentanoic acid |
CAS registry number | 74-79-3 |
Monisotopic molecular weight | 174.111675712 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pahtways |
3-Phosphoglycerate dehydrogenase deficiencyArginine and Proline MetabolismArginine: Glycine Amidinotransferase Deficiency [AGAT Deficiency]ArgininemiaArgininosuccinic AciduriaAspartate MetabolismCanavan DiseaseCarbamoyl Phosphate Synthetase DeficiencyCitrullinemia Type ICreatine deficiency, guanidinoacetate methyltransferase deficiencyDihydropyrimidine Dehydrogenase Deficiency [DHPD]Dimethylglycine Dehydrogenase DeficiencyDimethylglycine Dehydrogenase DeficiencyGlycine and Serine MetabolismGuanidinoacetate Methyltransferase Deficiency [GAMT Deficiency]Hyperglycinemia, non-ketoticHyperornithinemia with gyrate atrophy [HOGA]Hyperornithinemia-hyperammonemia-homocitrullinuria [HHH-syndrome]Hyperprolinemia Type IHyperprolinemia Type IIHypoacetylaspartiaL-arginine:glycine amidinotransferase deficiencyNon Ketotic HyperglycinemiaOrnithine Aminotransferase Deficiency [OAT Deficiency]Ornithine Transcarbamylase Deficiency [OTC Deficiency]Prolidase Deficiency [PD]Prolinemia Type IISarcosinemiaTranscription/TranslationUrea Cycle |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Huang et al. 2016 | – | dried blood spot | diagnosis | lung cancer | – | 222 | 94, 128 | median: 57.47 (27-81) | – | healthy | 96 | 30, 66 | median: 56.07 (32-80) | – |
Huang et al. 2016 | – | dried blood spot | diagnosis | benign lung disease | – | 118 | 55, 63 | median: 59.61 (32-80) | – | healthy | 96 | 30, 66 | median: 56.07 (32-80) | – |
Ni et al. 2019 | – | serum | diagnosis | lung cancer | – | 40 | 26, 14 | 66.7 (49-83) | – | healthy | 100 | 65, 35 | 64.1 (41-90) | – |
Ni et al. 2016 | – | serum | diagnosis | lung cancer | – | 40 | 14, 26 | 67 | – | healthy | 100 | – | – | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Maeda et al. 2010 | – | plasma | – | NSCLC | I, II, III, IV | 141 | 93, 48 | 62.7 ± 9.2 | former, current, non-smoker | healthy | 423 | 279, 144 | 61.1 ± 8.7 | former, current, non-smoker |
Callejon-Leblic et al. 2016 | – | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Ni et al. 2019 | – | serum | diagnosis | NSCLC, SCLC | II, III, IV | 17 | 13, 4 | 66.3 (53-77) | former, current, non-smoker | healthy | 30 | 23, 7 | 62.8 (34-85) | former, current, non-smoker |
Klupczynska et al. 2016a | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 90 | 58, 32 | 64 (48-86) | current, non-smoker, unknown | healthy | 63 | 41, 22 | 62 (43-78) | smoker, non-smoker, unknown |
Yue et al. 2018 | – | plasma | diagnosis | SCLC | – | 20 | – | – | – | healthy | 20 | – | – | – |
Wen et al. 2013 | – | plasma | diagnosis | adenocarcinoma | I | 31 | 15, 16 | median: 63 (40-81) | smoker, non-smoker | healthy | 28 | 20, 8 | median: 37 (29-50) | smoker, non-smoker |
Yang et al. 2020 | – | pleural effusion | diagnosis | adenocarcinoma | – | 46 | 15, 31 | 63 ± 12 | – | pulmonary tuberculosis, other pulmonary diseases | 32 | 26, 6 | 49 ± 19 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Huang et al. 2016 | LC | ESI | positive | QTrap | MS/MS |
Huang et al. 2016 | LC | ESI | positive | QTrap | MS/MS |
Ni et al. 2019 | LC | ESI | positive | triple quadrupole | MS/MS |
Ni et al. 2016 | LC | ESI | positive | Triple quadrupole | MS/MS |
Mazzone et al. 2016 | LC | ESI | positive | linear ion-trap | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Maeda et al. 2010 | LC | ESI | positive | quadrupole | – |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Ni et al. 2019 | LC | ESI | positive | triple quadrupole | MS/MS |
Klupczynska et al. 2016a | LC | – | – | QTRAP | MS/MS |
Yue et al. 2018 | LC | ESI | positive, negative | QTRAP | MS/MS |
Wen et al. 2013 | LC | ESI | – | Q-TOF | MS/MS |
Yang et al. 2020 | LC | ESI | positive | Q-Orbitrap | MS/MS |
Reference | Data processing software | Database search |
Huang et al. 2016 | Analyst software, ChemoView software | – |
Huang et al. 2016 | Analyst software, ChemoView software | – |
Ni et al. 2019 | – | HMDB, KEGG, SMPDB |
Ni et al. 2016 | – | – |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Maeda et al. 2010 | Xcalibur | – |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Ni et al. 2019 | – | HMDB, KEGG, SMPDB |
Klupczynska et al. 2016a | – | – |
Yue et al. 2018 | Analyst, MultiQuant | – |
Wen et al. 2013 | MassHunter, Mass Profiler Professional software (Agilent) | NIST 08, HMDB, METLIN, LIPID MAPS |
Yang et al. 2020 | XCMS | HMDB, METLIN, LipidSearch |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Huang et al. 2016 | PLS-DA, ANOVA, student’s t-test | – | – | – | <0.001 | – | – |
Huang et al. 2016 | PLS-DA, ANOVA, student’s t-test | – | – | – | <0.001 | – | – |
Ni et al. 2019 | Mann-Whitney U test, Student's t-test, Welch's F test | 224.94 | 119.51 | – | <0.001 | – | – |
Ni et al. 2016 | one‐way ANOVA | 224.94 ± 72.52 μmol/L | 123.76 ± 43.14 μmol/L | – | <0.0001 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 1.025966± 0.2495975 | 1.025497± 0.232247 | 1.00045733922186 | 0.9875386 | 0.804216432 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.01312334003287 | 0.812289024660883 | 0.835317837215702 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.09817071824279 | 0.251250433741696 | 0.319888280293855 | – |
Maeda et al. 2010 | Mann-Whitney U-test, PCA | 101.3 ± 21.6 μM | 98.1±17.8 μM | – | 0.12 | – | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.8 | 0.036 | – | 1.43 |
Ni et al. 2019 | Mann-Whitney U test, Student's t-test, Welch's F test | 139.89 | 119.89 | – | 0.012 | – | – |
Klupczynska et al. 2016a | t-test, Welch’s t-test or the Mann-Whitney U test, one-way ANOVA | 106.5±32.7 ?M | 94.11±23.52 ?M | 1.13 | 0.0058 | – | – |
Yue et al. 2018 | OPLS-DA, student’s t-test | 495.84±146.08 ng/mL | 346.18±93.95 ng/mL | 2.67585510957222 | 0.0000863 | – | 1.36 |
Wen et al. 2013 | Mann–Whitney–Wilcoxon test, OPLS-DA | – | – | 0.129408115480172 | 0.000000179 | – | 1.13 |
Yang et al. 2020 | PLS-DA | – | – | 1.38 | – | 0.00009 | 1.04 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Huang et al. 2016 | – | – | – | – | – | – |
Huang et al. 2016 | – | – | – | – | – | – |
Ni et al. 2019 | ROC analysis | – | 0.907 | – | – | – |
Ni et al. 2016 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Maeda et al. 2010 | ROC curve | – | combination of 21 amino acid: 0.812 | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.53 | – | – | – |
Ni et al. 2019 | ROC analysis | – | 0.716 | – | – | – |
Klupczynska et al. 2016a | ROC curve analysis (Monte-Carlo cross validation), discriminant function analysis | – | 0.631 | – | – | – |
Yue et al. 2018 | – | – | – | – | – | – |
Wen et al. 2013 | ROC curve analysis | – | 0.89 | – | – | – |
Yang et al. 2020 | ROC analysis | – | 0.81 | – | – | – |