Metabolite information |
|
HMDB ID | HMDB0000294 |
Synonyms |
ARFAlphadrateBasodexanBeautification productBromisovalumBubber shetCalmuridCalmurid HCCarbadermCarbamideCarbamide resinCarbonyl diamideCarbonyl diamineCarbonyldiamideCarbonyldiamineCarmolCsfCucurbitsCytoplasmaDigestionExtracellular regionFaecalFaecesFamilial protein intoleranceFaunaFecalFloraGourdsGramineaeH2NC[O]NH2HarnstoffHelicosolHyanitHyperdibasic aminoaciduria type 2IsoureaKarbamidKeratinaminKeratinamin kowaKidneysLegumeLiver cirrhosisLpiMocovinaOnychomalPanafilPapilionoideaePcpPersonal hygieneProstate glandSoySoyaSoya beanSoybeanStoolTb meningitisToiletriesToiletryTubercular meningitisTuberculosis meningitisUREUreaphilUreeUreophilb-I-Kbeta-I-Ke927bur |
Chemical formula | CH4N2O |
IUPAC name | urea |
CAS registry number | 57-13-6 |
Monisotopic molecular weight | 60.03236276 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Organic carbonic acids and derivatives |
Sub class | Ureas |
Biological properties |
|
Pahtways |
Amiloride Action PathwayArginine and Proline MetabolismArginine: Glycine Amidinotransferase Deficiency [AGAT Deficiency]ArgininemiaArgininosuccinic AciduriaBendroflumethiazide Action PathwayBlue diaper syndromeBumetanide Action PathwayCarbamoyl Phosphate Synthetase DeficiencyChlorothiazide Action PathwayChlorthalidone Action PathwayCitrullinemia Type ICreatine deficiency, guanidinoacetate methyltransferase deficiencyCyclothiazide Action PathwayCystinuriaD-Arginine and D-Ornithine MetabolismEplerenone Action PathwayEthacrynic Acid Action PathwayFurosemide Action PathwayGlucose Transporter Defect [SGLT2]Guanidinoacetate Methyltransferase Deficiency [GAMT Deficiency]Hartnup DisorderHydrochlorothiazide Action PathwayHydroflumethiazide Action PathwayHyperornithinemia with gyrate atrophy [HOGA]Hyperornithinemia-hyperammonemia-homocitrullinuria [HHH-syndrome]Hyperprolinemia Type IHyperprolinemia Type IIIminoglycinuriaIndapamide Action PathwayKidney FunctionL-arginine:glycine amidinotransferase deficiencyLysinuric Protein IntoleranceLysinuric protein intolerance [LPI]Methyclothiazide Action PathwayMetolazone Action PathwayOrnithine Aminotransferase Deficiency [OAT Deficiency]Ornithine Transcarbamylase Deficiency [OTC Deficiency]Polythiazide Action PathwayProlidase Deficiency [PD]Prolinemia Type IIQuinethazone Action PathwaySpironolactone Action PathwayTorsemide Action PathwayTriamterene Action PathwayTrichlormethiazide Action PathwayUrea Cycle |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Chen et al. 2015 | – | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Hori et al. 2011 | – | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Roś-Mazurczyk et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Callejon-Leblic et al. 2016 | – | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Callejon-Leblic et al. 2019 | – | urine | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Sun et al. 2019 | – | serum | diagnosis | lung cancer | I, II, III, IV | 31 | 21, 10 | 54.1 ± 9.9 | smoker, non-smoker | healthy | 29 | 15, 14 | 52.1 ± 14.6 | smoker, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Roś-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Chen et al. 2015 | GC | EI | – | quadrupole | – |
Sun et al. 2019 | GC | – | – | – | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Chen et al. 2015 | ChemStation | NIST |
Chen et al. 2015 | ChemStation | NIST |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Roś-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Chen et al. 2015 | ChemStation | NIST |
Sun et al. 2019 | – | BinBase, KEGG |
Moreno et al. 2018 | – | KEGG, HMDB |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.31039340385836 | <0.001 | – | 1.03 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 0.637280313659631 | <0.001 | – | 1.14 |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.02 | 0.951 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1 | 0.916 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 1.05628± 0.4647057 | 1.043567± 0.3709509 | 1.01218225566734 | 0.8030662 | 0.751368269 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 620351.333333333 | 630235.1 | 0.984317333854197 | 0.802285160952632 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 184523 ± 42921 | 179532 ± 40525 | 1.03 | 0.606 | 0.813 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.99 | 0.546 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 227827 ± 68929 | 252052 ± 81218 | 0.904 | 0.369 | 0.674 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.98 | 0.366 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 200181 ± 90481 | 162301 ± 91842 | 1.23 | 0.337 | 0.652 | – |
Roś-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 574.66 ± 560.22 | 486.81 ± 397.39 | 1.18046054929028 | 0.24283 | 0.57621 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 666717.727272727 | 584389 | 1.14088000847505 | 0.224605689884092 | – | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.15433060512295 | 0.0604991483587237 | 0.0919000904134245 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.74 | 0.048 | – | 1.3 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 157412 ± 102363 | 196899 ± 84339 | 0.8 | 0.02 | 0.222 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 8.84 | 0.011 | – | 1.85 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.24833054890161 | 0.01 | – | 1.07 |
Sun et al. 2019 | Student t test, PLS-DA | – | – | 1.52994310132377 | 0.000276 | 0.002596 | 0.15879 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.20606025136478 | 0.00000190081271884074 | 0.00000462453826108204 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1 | – | 0.615 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Chen et al. 2015 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Roś-Mazurczyk et al. 2017 | ROC curve | – | – | combination of nine metabolites: 100 | combination of nine metabolites: 86 | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.54 | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.7 | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Sun et al. 2019 | ROC curve analysis | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |