Metabolite information |
|
HMDB ID | HMDB0000163 |
Synonyms |
1-alpha-D-Glucopyranosyl-4-alpha-D-glucopyranose1-alpha-delta-Glucopyranosyl-4-alpha-delta-glucopyranose4-O-a-D-Glucopyranosyl-D-glucose4-O-a-D-Glucopyranosyl-a-D-mannopyranose4-O-alpha-D-Glucopyranosyl-D-glucopyranose4-O-alpha-D-Glucopyranosyl-D-glucose4-O-alpha-D-Glucopyranosyl-alpha-D-mannopyranose4-O-alpha-delta-Glucopyranosyl-delta-glucopyranose4-O-alpha-delta-Glucopyranosyl-delta-glucose4-O-α-D-glucopyranosyl-α-D-mannopyranose4-[alpha-D-glucopyranosido]-alpha-Glucopyranose4-[alpha-D-glucosido]-D-Glucose4-[alpha-delta-glucopyranosido]-alpha-Glucopyranose4-[alpha-delta-glucosido]-delta-GlucoseAdvantose 100CextromaltoseCoffeeCoffee beanCucurbitsCytoplasmaD-[+]-MaltoseDigestionExtracellular regionFaecalFaecesFaunaFecalFinetoseFinetose FFloraGourdsGramineaeKidneysLegumeMadorosMalt sugarMaltobioseMaltodioseMaltosMaltoseMaltose HHMaltose HHHMaltose solutionMalzzuckerMartos-10PapilionoideaePdSoySoyaSoya beanSoybeanStoolSunmaltSunmalt SThrombocytealpha-D-GLCP-[1->4]-D-GLCPalpha-D-Glucopyranosyl-[1->4]-D-glucopyranosealpha-D-Glucopyranosyl-[1->4]-D-glucosealpha-Malt sugaralpha-delta-GLCP-[1->4]-delta-GLCPalpha-delta-Glucopyranosyl-[1->4]-delta-glucopyranosealpha-delta-Glucopyranosyl-[1->4]-delta-glucosedelta-Maltosedelta-[+]-Maltose |
Chemical formula | C12H22O11 |
IUPAC name | (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3S,4R,5S,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol |
CAS registry number | 69-79-4 |
Monisotopic molecular weight | 342.116211546 |
Chemical taxonomy |
|
Super class | Organic oxygen compounds |
Class | Organooxygen compounds |
Sub class | Carbohydrates and carbohydrate conjugates |
Biological properties |
|
Pahtways |
Glycogen synthetase deficiencyGlycogenosis, Type III. Cori disease, Debrancher glycogenosisGlycogenosis, Type IV. Amylopectinosis, Anderson diseaseGlycogenosis, Type VI. Hers diseaseMucopolysaccharidosis VI. Sly syndromeStarch and Sucrose MetabolismSucrase-isomaltase deficiency |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Sun et al. 2019 | – | serum | diagnosis | lung cancer | I, II, III, IV | 31 | 21, 10 | 54.1 ± 9.9 | smoker, non-smoker | healthy | 29 | 15, 14 | 52.1 ± 14.6 | smoker, non-smoker |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Sun et al. 2019 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Sun et al. 2019 | – | BinBase, KEGG |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Mazzone et al. 2016 | two- sample independent t test | 0.6658766± 0.5577826 | 0.6572626± 0.5734163 | 1.01310587275162 | 0.9043071 | 0.790949301 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 1061.45454545455 | 988.636363636364 | 1.07365517241379 | 0.818579605509709 | – | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.774640260300949 | 0.147937057880348 | 0.203587361785181 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 183 ± 200 | 132 ± 169 | 1.38 | 0.078 | 0.258 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.753318032428868 | 0.0476639483358995 | 0.0614472225719673 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 1297.5 | 779.95 | 1.66356817744727 | 0.0131538257068894 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 375 ± 480 | 198 ± 85 | 1.89 | 0.004 | 0.117 | – |
Sun et al. 2019 | Student t test, PLS-DA | – | – | 1.71977997334083 | 0.000228 | 0.002408 | 0.51667 |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 309 ± 262 | 139 ± 73 | 2.218 | 0 | 0.001 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 704 ± 718 | 326 ± 302 | 2.16 | 0 | 0.015 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.6 | – | 0.47 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Mazzone et al. 2016 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | 0.617 (0.496, 0.738) maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=0.699 (0.583, 0.815) maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline+pyrophosphate+tryptophan+adenosine-5-Phosphate=0.670 (0.552, 0.789) | 55.8 | 69.8 | 62.8 |
Moreno et al. 2018 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Sun et al. 2019 | ROC curve analysis | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | 0.741 (0.629, 0.853) maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline=0.880 (0.805, 0.954) maltose+maltotriose+cystine+3-Phosphoglycerate+citrulline+pyrophosphate+tryptophan+adenosine-5-Phosphate=0.883 (0.812, 0.955) | – | – | 72.3 |
Wikoff et al. 2015b | – | – | – | – | – | – |