Showing information for HMDB0000784 ('azelate', 'azelaic acid')


Metabolite information

HMDB ID HMDB0000784
Synonyms
1,7-Dicarboxyheptane
1,7-Heptanedicarboxylate
1,7-Heptanedicarboxylic acid
1,9-Nonanedioate
1,9-Nonanedioic acid
Acide azelaique
Acidum azelaicum
Anchoate
Anchoic acid
Azalaic acid
Azelaate
Azelaic acid, dilithium salt
Azelaic acid, dipotassium salt
Azelaic acid, disodium salt
Azelaic acid, monosodium salt
Azelaic acid, potassium salt
Azelaic acid, sodium salt
Azelaicacidtech
Azelainic acid
Azelainsaeure
Azelate
Azelex
Beautification product
Cellular membrane
Csf
Cutaneous [related but nor necessarily exact synonym]
Cytoplasma
Digestion
Emerox 1110
Emerox 1144
Emery'S L-110
Faecal
Faeces
Fecal
Finacea
Finevin
Flora
Heptanedicarboxylic acid
Legume
Lepargylate
Lepargylic acid
Lipid body
Lipid droplet
Lipid metabolic process
Lipid particle
Membrane integrity agent
Membrane stability agent
N-Nonanedioate
N-Nonanedioic acid
Nonandisaeure
Nonanedioate
Nonanedioic acid
Nonanedioic acid azelaic acid
Nonanedioic acid homopolymer
Papilionoideae
Pcp
Personal hygiene
Poly[azelaic anhydride]
Polyazelaic anhydride
Prostate gland
Skin contact
Skinorem
Skinoren
Stool
Toiletries
Toiletry
Topical
Transdermal
Chemical formula C9H16O4
IUPAC name
nonanedioic acid
CAS registry number 123-99-9
Monisotopic molecular weight 188.104859

Chemical taxonomy

Super class Lipids and lipid-like molecules
Class Fatty Acyls
Sub class Fatty acids and conjugates

Biological properties

Pahtways
Author-emphasized biomarker in the paper(s)

Lung cancer metabolomics studies that identify HMDB0000784 ('azelate', 'azelaic acid')


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Fahrmann et al. 2015 serum diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Miyamoto et al. 2015 blood diagnosis adenocarcinoma unknown (mostly late stage) 18 10, 8 67 (50-85) / 62 (53-72) former, current healthy 20 8, 12 64 (49-80) / 66 (58-82) former, current
Miyamoto et al. 2015 blood diagnosis NSCLC, SCLC, mesothelioma, secondary metastasis to lung I, II, III, IV 11 4, 7 67 (61-73) / 67 (47-76) smoker, non-smoker healthy 11 5, 6 69 (61-83) / 54 (44-61) unknown
Fahrmann et al. 2015 plasma diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Fahrmann et al. 2015 plasma diagnosis adenocarcinoma I, II, III, IV 52 17, 35 65.9 ± 9.66 healthy 31 11, 20 64.1 ± 8.97
Fahrmann et al. 2015 serum diagnosis adenocarcinoma I, II, III, IV 49 17, 32 65.9 ± 9.87 healthy 31 11, 20 64.1 ± 8.97
Mazzone et al. 2016 serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Sun et al. 2019 serum diagnosis lung cancer I, II, III, IV 31 21, 10 54.1 ± 9.9  smoker, non-smoker healthy 29 15, 14 52.1 ± 14.6 smoker, non-smoker
Moreno et al. 2018 tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Wikoff et al. 2015b tissue diagnosis adenocarcinoma I 39 15, 24 72.33 ± 8.78 smoker, non-smoker tumor vs. adjacent normal tissue 39 15, 24 72.33 ± 8.78 smoker, non-smoker
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Fahrmann et al. 2015 GC EI TOF
Miyamoto et al. 2015 GC EI TOF MS/MS
Miyamoto et al. 2015 GC EI TOF MS/MS
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Mazzone et al. 2016 LC ESI negative linear ion-trap MS/MS
Sun et al. 2019 GC
Moreno et al. 2018 LC, GC ESI, EI positive, negative LC: linear ion‐trap, GC: single‐quadrupole LC: MS/MS
Wikoff et al. 2015b GC EI TOF
Reference Data processing software Database search
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Sun et al. 2019 BinBase, KEGG
Moreno et al. 2018 KEGG, HMDB
Wikoff et al. 2015b BinBase NIST11, BinBase
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 520 ± 365 616 ± 1226 0.843 0.828 0.935
Miyamoto et al. 2015 Analysis of Covariance 2522.83333333333 2685.9 0.93928788612135 0.500265835140085
Miyamoto et al. 2015 Analysis of Covariance 545.636363636364 4671.45454545455 0.116802241855758 0.343847393066947
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 53 ± 15 49 ± 16 1.09 0.284 0.576
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 100 ± 36 90 ± 46 1.12 0.149 0.529
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 604 ± 1056 236 ± 134 2.56 0.008 0.146
Mazzone et al. 2016 two- sample independent t test 0.9385702± 0.3581637 1.1286984± 0.5664229 0.831550926270472 0.0031792 0.019631853
Sun et al. 2019 Student t test, PLS-DA 2.39408271845162 0.000455 0.004052 0.65377
Moreno et al. 2018 paired two‐sample t‐test, PLS-DA 0.7937356969116 0.000147765220089496 0.000473495851235684
Wikoff et al. 2015b OPLS-DA 1.2 0.178
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Fahrmann et al. 2015 random forest
Miyamoto et al. 2015
Miyamoto et al. 2015
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Mazzone et al. 2016
Sun et al. 2019 ROC curve analysis
Moreno et al. 2018
Wikoff et al. 2015b