Metabolite information |
|
HMDB ID | HMDB0000067 |
Synonyms |
(-)-Cholesterol(3b,14b,17a)-Cholest-5-en-3-ol(3beta)-Cholest-5-en-3-ol(3beta,14beta,17alpha)-Cholest-5-en-3-ol(3β)-Cholest-5-en-3-ol(3β,14β,17α)-cholest-5-en-3-ol3beta-Hydroxycholest-5-ene3β-Hydroxycholest-5-ene5:6-Cholesten-3beta-ol5:6-Cholesten-3β-olCholest-5-en-3b-olCholest-5-en-3beta-olCholest-5-en-3β-olCholesterinCholesterineCholesterolCholesterol base HCholesteryl alcoholCholestrinCholestrolCordulanDastarDusolineDusoranDytholFancol CHHydrocerinKathroLanolSuper hartolanTegolan |
Chemical formula | C27H46O |
IUPAC name | (1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol |
CAS registry number | 57-88-5 |
Monoisotopic molecular weight | 386.354866094 |
Chemical taxonomy |
|
Super class | Lipids and lipid-like molecules |
Class | Steroids and steroid derivatives |
Sub class | Cholestane steroids |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Chen et al. 2015b | China | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015b | China | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Musharraf et al. 2015 | Pakistan | plasma | – | adenocarcinoma, squamous cell carcinoma, NSCLC, SCLC, lung cancer | I, II, III | 96 | – | – | – | healthy | 96 | – | – | non-smoker |
Callejon-Leblic et al. 2016 | Spain | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Mu et al. 2019 | China | serum | diagnosis | NSCLC | I, II, III, IV | 30 | 0, 30 | 60.4 ± 9.7 | non-smoker | healthy | 30 | 0, 30 | 54.7 ± 14.3 | non-smoker |
Zheng et al. 2021 | China | Serum | diagnosis | lung cancer | I, II, III, IV | 57 | 38, 19 | Median: 62 (52-69) | smoker, non-smoker | healthy | 59 | 48, 11 | Median: 60 (59-62) | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Chen et al. 2015b | GC | EI | – | quadrupole | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Musharraf et al. 2015 | GC | EI | – | triple quadrupole | – |
Callejon-Leblic et al. 2016 | GC | EI | – | ion trap | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Mu et al. 2019 | GC | – | – | – | – |
Zheng et al. 2021 | GC | EI | – | quadrupole | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Chen et al. 2015b | ChemStation | NIST |
Chen et al. 2015b | ChemStation | NIST |
Chen et al. 2015b | ChemStation | NIST |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Musharraf et al. 2015 | Agilent Mass Hunter Qualitative Analysis, Mass Hunter | Wiley registry NIST 11, Fiehn RTL libraries |
Callejon-Leblic et al. 2016 | XCMS | NIST Mass Spectral Library |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Mu et al. 2019 | – | – |
Zheng et al. 2021 | MassHunter Workstation software, Mass Profiler Professional software | NIST14, HMDB, Golm Metabolome Database |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 294290.444444444 | 263529.35 | 1.12 | 0.28 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 296451 | 259749.636363636 | 1.14 | 0.07 | – | – |
Mazzone et al. 2016 | two- sample independent t test | 0.9487085± 0.1522138 | 1.0097426± 0.1682058 | 0.94 | 3.26e-03 | 0.02 | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 365.71 ± 139.16 | 400.39 ± 186.85 | 0.91 | 0.36 | 0.69 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 42629 ± 23502 | 45116 ± 26006 | 0.95 | 0.96 | 0.98 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 53193 ± 12343 | 54802 ± 13674 | 0.97 | 0.87 | 0.95 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 56451 ± 41418 | 51016 ± 38967 | 1.11 | 0.21 | 0.58 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 74293 ± 15808 | 84288 ± 15250 | 0.88 | 6.00e-03 | 0.07 | – |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 1.42 | 1.00e-03 | – | 1.62 |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 0.71 | 1.00e-03 | – | 1.32 |
Chen et al. 2015b | PCA, PLS-DA, independent t test | – | – | 0.49 | 1.00e-03 | – | 2.14 |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.00 | – | 0.66 | – |
Musharraf et al. 2015 | one way ANOVA, Turkey’s honest Significance Difference | – | – | 175648.29 | 1.00e-03 | – | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.47 | 0.02 | – | 1.55 |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.32 | 3.70e-05 | 7.26e-05 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 1.07 | 0.15 | 0.20 | – |
Mu et al. 2019 | PCA, PLS-DA, Mann-Whitney U test | – | – | 0.84 | 1.00e-03 | 1.00e-03 | 1.51 |
Zheng et al. 2021 | Student’s t-test, Mann–Whitney U test, PCA, PLS-DA, and OPLS-DA | – | – | 0.84 | 9.76e-31 | 1.76e-29 | 1.34 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Chen et al. 2015b | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Musharraf et al. 2015 | Hierarchical clustering, Partial Least Square Discrimination | – | – | 96.2 | 92 | 93.1 |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.72 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Mu et al. 2019 | – | – | – | – | – | – |
Zheng et al. 2021 | ROC analysis | – | 0.993 (Combination of cholesterol, oleic acid, 4-hydroxybutyric acid, myo-inositol, and 2-hydroxybutyric acid) | – | – | – |