Showing information for HMDB0000744 ('malic acid', 'malate')


Metabolite information

HMDB ID HMDB0000744
Synonyms
2-Hydroxybutanedioate
2-Hydroxybutanedioic acid
2-Hydroxyethane-1,2-dicarboxylate
2-Hydroxyethane-1,2-dicarboxylic acid
2-Hydroxysuccinate
2-Hydroxysuccinic acid
Aepfelsaeure
Apple acid
Calcium [hydroxy-1-malate] hexahydrate
Csf
Cytoplasma
DL-Malate
DL-Malic acid
Deoxytetrarate
Deoxytetraric acid
Digestion
Faecal
Faeces
Fauna
Fecal
Flora
Gramineae
H2Mal
Hydroxybutanedioate
Hydroxybutanedioic acid
Hydroxysuccinate
Hydroxysuccinic acid
Legume
Malate
Malic acid, [R]-isomer
Malic acid, calcium salt, [1:1], [S]-isomer
Malic acid, disodium salt
Malic acid, disodium salt, [R]-isomer
Malic acid, disodium salt, [S]-isomer
Malic acid, magnesium salt [2:1]
Malic acid, monopotassium salt, [+-]-isomer
Malic acid, potassium salt, [R]-isomer
Malic acid, sodium salt, [+-]-isomer
Musashi-NO-ringosan
Papilionoideae
Pomalus acid
R,S-Malate
R,S-Malic acid
R,SMalate
R,SMalic acid
Soy
Soya
Soya bean
Soybean
Stool
a-Hydroxysuccinate
a-Hydroxysuccinic acid
alpha-Hydroxysuccinate
alpha-Hydroxysuccinic acid
e296
α-hydroxysuccinate
α-hydroxysuccinic acid
Chemical formula C4H6O5
IUPAC name
2-hydroxybutanedioic acid
CAS registry number 6915-15-7
Monisotopic molecular weight 134.021523302

Chemical taxonomy

Super class Organic acids and derivatives
Class Hydroxy acids and derivatives
Sub class Beta hydroxy acids and derivatives

Biological properties

Pahtways
Fructose-1,6-diphosphatase deficiency
Gluconeogenesis
Glycogen Storage Disease Type 1A [GSD1A] or Von Gierke Disease
Glycogenosis, Type IA. Von gierke disease
Glycogenosis, Type IB
Glycogenosis, Type IC
Malate-Aspartate Shuttle
Phosphoenolpyruvate carboxykinase deficiency 1 [PEPCK1]
The Oncogenic Action of Fumarate
Triosephosphate isomerase
Author-emphasized biomarker in the paper(s)

Lung cancer metabolomics studies that identify HMDB0000744 ('malic acid', 'malate')


Reference Country Specimen Marker function Participants (Case) Participants (Control)
Cancer type Stage Number Gender (M,F) Age mean (range) (M/F) Smoking status Type Number Gender (M,F) Age mean (range) (M/F) Smoking status
Fahrmann et al. 2015 plasma diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Mazzone et al. 2016 serum adenocarcinoma, squamous cell carcinoma I, II, III 94 55.3%, 44.7% 68.7 at-risk controls 190 50.5%, 49.5% 66.2
Miyamoto et al. 2015 blood diagnosis NSCLC, SCLC, mesothelioma, secondary metastasis to lung I, II, III, IV 11 4, 7 67 (61-73) / 67 (47-76) smoker, non-smoker healthy 11 5, 6 69 (61-83) / 54 (44-61) unknown
Miyamoto et al. 2015 blood diagnosis adenocarcinoma unknown (mostly late stage) 18 10, 8 67 (50-85) / 62 (53-72) former, current healthy 20 8, 12 64 (49-80) / 66 (58-82) former, current
Hori et al. 2011 serum diagnosis adenocarcinoma, squamous cell carcinoma, SCLC III, IV 22 healthy 29 23, 6 median: 64 (34-78) smoker, non-smoker, unknown
Fahrmann et al. 2015 serum diagnosis adenocarcinoma I, II, III, IV 49 17, 32 65.9 ± 9.87 healthy 31 11, 20 64.1 ± 8.97
Hori et al. 2011 serum diagnosis adenocarcinoma, squamous cell carcinoma, SCLC I, II 11 healthy 29 23, 6 median: 64 (34-78) smoker, non-smoker, unknown
Fahrmann et al. 2015 plasma diagnosis adenocarcinoma I, II, III, IV 52 17, 35 65.9 ± 9.66 healthy 31 11, 20 64.1 ± 8.97
Fahrmann et al. 2015 serum diagnosis adenocarcinoma I, II, III, IV 43 21, 22 67.3 ± 10.10 healthy 43 21, 22 65.9 ± 8.05
Huang et al. 2019 plasma diagnosis lung cancer 31 19, 12 28-64 healthy 35 24, 11 23-60
Klupczynska et al. 2017 serum diagnosis adenocarcinoma, squamous cell carcinoma I, II 50 28, 22 65 (53-86) healthy 25 14, 11 64 (50-78)
Hori et al. 2011 tissue diagnosis adenocarcinoma, squamous cell carcinoma, SCLC 7 6, 1 median: 61 (53-82) smoker, non-smoker tumor vs. adjacent normal tissue 7 6, 1 median: 61 (53-82) smoker, non-smoker
Hori et al. 2011 serum diagnosis adenocarcinoma, squamous cell carcinoma, SCLC I, II, III, IV 33 26, 7 median: 65 (55-81) smoker, non-smoker, unknown healthy 29 23, 6 median: 64 (34-78) smoker, non-smoker, unknown
Yue et al. 2018 plasma diagnosis SCLC 20 healthy 20
Moreno et al. 2018 tissue therapy, diagnosis adenocarcinoma I, II, III 33 24, 9 62.11 ± 9.73 tumor vs. adjacent normal tissue 33 24, 9 62.11 ± 9.73
Moreno et al. 2018 tissue therapy, diagnosis squamous cell carcinoma I, II, III 35 35, 0 68.71 ± 7.46 tumor vs. adjacent normal tissue 35 35, 0 68.71 ± 7.46
Wikoff et al. 2015b tissue diagnosis adenocarcinoma I 39 15, 24 72.33 ± 8.78 smoker, non-smoker tumor vs. adjacent normal tissue 39 15, 24 72.33 ± 8.78 smoker, non-smoker
Reference Chromatography Ion source Positive/Negative mode Mass analyzer Identification level
Fahrmann et al. 2015 GC EI TOF
Mazzone et al. 2016 GC EI quadrupole MS/MS
Miyamoto et al. 2015 GC EI TOF MS/MS
Miyamoto et al. 2015 GC EI TOF MS/MS
Hori et al. 2011 GC
Fahrmann et al. 2015 GC EI TOF
Hori et al. 2011 GC
Fahrmann et al. 2015 GC EI TOF
Fahrmann et al. 2015 GC EI TOF
Huang et al. 2019 LC ESI negative Q-Orbitrap MS/MS
Klupczynska et al. 2017 LC ESI positive Quadrupole- Orbitrap MS/MS
Hori et al. 2011 GC
Hori et al. 2011 GC
Yue et al. 2018 LC ESI positive, negative QTRAP MS/MS
Moreno et al. 2018 LC, GC ESI, EI positive, negative LC: linear ion‐trap, GC: single‐quadrupole LC: MS/MS
Moreno et al. 2018 LC, GC ESI, EI positive, negative LC: linear ion‐trap, GC: single‐quadrupole LC: MS/MS
Wikoff et al. 2015b GC EI TOF
Reference Data processing software Database search
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Mazzone et al. 2016 Metabolon LIMS system Metabolon LIMS system
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Miyamoto et al. 2015 ChromaTOF software (Leco) UC Davis Metabolomics BinBase database
Hori et al. 2011 Shimadzu GCMSsolution software commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08)
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Hori et al. 2011 Shimadzu GCMSsolution software commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08)
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Fahrmann et al. 2015 UC Davis Metabolomics BinBase database
Huang et al. 2019 XCMS OSI-SMMS
Klupczynska et al. 2017 MZmine 2.19 software HMDB
Hori et al. 2011 Shimadzu GCMSsolution software commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08)
Hori et al. 2011 Shimadzu GCMSsolution software commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08)
Yue et al. 2018 Analyst, MultiQuant
Moreno et al. 2018 KEGG, HMDB
Moreno et al. 2018 KEGG, HMDB
Wikoff et al. 2015b BinBase NIST11, BinBase
Reference Difference method Mean concentration (case) Mean concentration (control) Fold change (case/control) P-value FDR VIP
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 163 ± 51 194 ± 258 0.84 0.888 0.958
Mazzone et al. 2016 two- sample independent t test 1.151086± 0.6901209 1.061722± 0.5293276 1.08416892557562 0.2280164 0.341191697
Miyamoto et al. 2015 Analysis of Covariance 1149.09090909091 1557.81818181818 0.737628384687208 0.120036056161392
Miyamoto et al. 2015 Analysis of Covariance 1463.88888888889 1254.1 1.16728242475791 0.0856627899454845
Hori et al. 2011 student’s t-test, PLS-DA 1.43 0.033
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 248 ± 113 173 ± 104 1.43 0.004 0.117
Hori et al. 2011 student’s t-test, PLS-DA 1.35 0.0036
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 265 ± 109 197 ± 94 1.35 0.002 0.052
Fahrmann et al. 2015 regress (by the covariates: age, gender and smoking history [packs per year]), permutation test 439 ± 1174 193 ± 55 2.27 0.001 0.012
Huang et al. 2019 OPLS-DA, Mann-Whitney U test 0.690930505 0.000749386 1.414421201
Klupczynska et al. 2017 t-test 0.81 0.00049 0.00565
Hori et al. 2011 student’s t-test, PLS-DA 1.84 0.0003
Hori et al. 2011 student’s t-test, PLS-DA 1.4 0.0002
Yue et al. 2018 OPLS-DA, student’s t-test 398.03±103.15 ng/mL 623.55±63.80 ng/mL 0.181746564665039 0.00000929 1.57
Moreno et al. 2018 paired two‐sample t‐test, PLS-DA 1.63439602171191 0.00000272599905188882 0.0000163933367640985
Moreno et al. 2018 paired two‐sample t‐test, PLS-DA 1.28742572366836 0.00000232941977013598 0.00000553237195407296
Wikoff et al. 2015b OPLS-DA 1.3 0.045
Reference Classification method Cutoff value AUROC 95%CI Sensitivity (%) Specificity (%) Accuracy (%)
Fahrmann et al. 2015 random forest
Mazzone et al. 2016
Miyamoto et al. 2015
Miyamoto et al. 2015
Hori et al. 2011
Fahrmann et al. 2015 random forest
Hori et al. 2011
Fahrmann et al. 2015 random forest
Fahrmann et al. 2015 random forest
Huang et al. 2019
Klupczynska et al. 2017 ROC curve analysis (Monte-Carlo cross validation) 0.717 (0.599–0.843) 0.71 0.64
Hori et al. 2011
Hori et al. 2011
Yue et al. 2018
Moreno et al. 2018
Moreno et al. 2018
Wikoff et al. 2015b