Metabolite information |
|
HMDB ID | HMDB0000744 |
Synonyms |
2-Hydroxybutanedioate2-Hydroxybutanedioic acid2-Hydroxyethane-1,2-dicarboxylate2-Hydroxyethane-1,2-dicarboxylic acid2-Hydroxysuccinate2-Hydroxysuccinic acidAepfelsaeureApple acidCalcium [hydroxy-1-malate] hexahydrateCsfCytoplasmaDL-MalateDL-Malic acidDeoxytetrarateDeoxytetraric acidDigestionFaecalFaecesFaunaFecalFloraGramineaeH2MalHydroxybutanedioateHydroxybutanedioic acidHydroxysuccinateHydroxysuccinic acidLegumeMalateMalic acid, [R]-isomerMalic acid, calcium salt, [1:1], [S]-isomerMalic acid, disodium saltMalic acid, disodium salt, [R]-isomerMalic acid, disodium salt, [S]-isomerMalic acid, magnesium salt [2:1]Malic acid, monopotassium salt, [+-]-isomerMalic acid, potassium salt, [R]-isomerMalic acid, sodium salt, [+-]-isomerMusashi-NO-ringosanPapilionoideaePomalus acidR,S-MalateR,S-Malic acidR,SMalateR,SMalic acidSoySoyaSoya beanSoybeanStoola-Hydroxysuccinatea-Hydroxysuccinic acidalpha-Hydroxysuccinatealpha-Hydroxysuccinic acide296α-hydroxysuccinateα-hydroxysuccinic acid |
Chemical formula | C4H6O5 |
IUPAC name | 2-hydroxybutanedioic acid |
CAS registry number | 6915-15-7 |
Monisotopic molecular weight | 134.021523302 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Hydroxy acids and derivatives |
Sub class | Beta hydroxy acids and derivatives |
Biological properties |
|
Pahtways |
Fructose-1,6-diphosphatase deficiencyGluconeogenesisGlycogen Storage Disease Type 1A [GSD1A] or Von Gierke DiseaseGlycogenosis, Type IA. Von gierke diseaseGlycogenosis, Type IBGlycogenosis, Type ICMalate-Aspartate ShuttlePhosphoenolpyruvate carboxykinase deficiency 1 [PEPCK1]The Oncogenic Action of FumarateTriosephosphate isomerase |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Huang et al. 2019 | – | plasma | diagnosis | lung cancer | – | 31 | 19, 12 | 28-64 | – | healthy | 35 | 24, 11 | 23-60 | – |
Klupczynska et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II | 50 | 28, 22 | 65 (53-86) | – | healthy | 25 | 14, 11 | 64 (50-78) | – |
Hori et al. 2011 | – | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Yue et al. 2018 | – | plasma | diagnosis | SCLC | – | 20 | – | – | – | healthy | 20 | – | – | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Mazzone et al. 2016 | GC | EI | – | quadrupole | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Huang et al. 2019 | LC | ESI | negative | Q-Orbitrap | MS/MS |
Klupczynska et al. 2017 | LC | ESI | positive | Quadrupole- Orbitrap | MS/MS |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Yue et al. 2018 | LC | ESI | positive, negative | QTRAP | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Huang et al. 2019 | XCMS | OSI-SMMS |
Klupczynska et al. 2017 | MZmine 2.19 software | HMDB |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Yue et al. 2018 | Analyst, MultiQuant | – |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 163 ± 51 | 194 ± 258 | 0.84 | 0.888 | 0.958 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.151086± 0.6901209 | 1.061722± 0.5293276 | 1.08416892557562 | 0.2280164 | 0.341191697 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 1149.09090909091 | 1557.81818181818 | 0.737628384687208 | 0.120036056161392 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 1463.88888888889 | 1254.1 | 1.16728242475791 | 0.0856627899454845 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.43 | 0.033 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 248 ± 113 | 173 ± 104 | 1.43 | 0.004 | 0.117 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.35 | 0.0036 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 265 ± 109 | 197 ± 94 | 1.35 | 0.002 | 0.052 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 439 ± 1174 | 193 ± 55 | 2.27 | 0.001 | 0.012 | – |
Huang et al. 2019 | OPLS-DA, Mann-Whitney U test | – | – | 0.690930505 | 0.000749386 | – | 1.414421201 |
Klupczynska et al. 2017 | t-test | – | – | 0.81 | 0.00049 | 0.00565 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.84 | 0.0003 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 1.4 | 0.0002 | – | – |
Yue et al. 2018 | OPLS-DA, student’s t-test | 398.03±103.15 ng/mL | 623.55±63.80 ng/mL | 0.181746564665039 | 0.00000929 | – | 1.57 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.63439602171191 | 0.00000272599905188882 | 0.0000163933367640985 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.28742572366836 | 0.00000232941977013598 | 0.00000553237195407296 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.3 | – | 0.045 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Huang et al. 2019 | – | – | – | – | – | – |
Klupczynska et al. 2017 | ROC curve analysis (Monte-Carlo cross validation) | – | 0.717 (0.599–0.843) | 0.71 | 0.64 | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Yue et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |