Metabolite information |
|
HMDB ID | HMDB0000062 |
Synonyms |
1-Carnitine3-Carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium3-Carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium hydroxide, inner salt3-Hydroxy-4-trimethylammoniobutanoate3-Hydroxy-4-trimethylammoniobutanoic acidAdiposeAdult-onset diabetesBeautification productBicarnesineBody fatCarcinoma of the lungCarnicorCarnikingCarniking 50CarnileanCarnipassCarnipass 20CarniteneCarnitineCarnitorCsfCytoplasmaD-CarnitineDL-CarnitineDietary supplementDigestionEeErExtracellular regionFaecalFaecesFat tissueFaunaFecalFloraHeart muscleHigh blood pressureHpnHtnIncreased heart rateIntra-venousIrrigationKarnitinKidneysL CarnitineL-[-]-CarnitineL-gamma-Trimethyl-beta-hydroxybutyrobetaineLegumeLevocarnitinaLevocarnitineLevocarnitinumLung carcinomaLungsMyocardial tissueMyocardiumNeuronNiddmNon-insulin-dependent diabetes mellitusNutraceuticalPapilionoideaePcpPeroxisomalPeroxisome vesiclePersonal hygieneProstate glandR-[-]-3-Hydroxy-4-trimethylaminobutyrateStoolStriated muscleTestesTestisThrombocyteToiletriesToiletryVitamin BT[-]-Carnitine[-]-L-Carnitine[-]-[R]-3-Hydroxy-4-[trimethylammonio]butyrate[R]-Carnitine[R]-[3-Carboxy-2-hydroxypropyl]trimethylammonium hydroxide[S]-Carnitine[epema syndrome]delta-Carnitinegamma-Trimethyl-ammonium-beta-hydroxybutirategamma-Trimethyl-beta-hydroxybutyrobetainegamma-Trimethyl-hydroxybutyrobetaine |
Chemical formula | C7H15NO3 |
IUPAC name | (3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate |
CAS registry number | 541-15-1 |
Monisotopic molecular weight | 161.105193351 |
Chemical taxonomy |
|
Super class | Organic nitrogen compounds |
Class | Organonitrogen compounds |
Sub class | Quaternary ammonium salts |
Biological properties |
|
Pahtways |
Adrenoleukodystrophy, X-linkedBeta Oxidation of Very Long Chain Fatty AcidsCarnitine SynthesisCarnitine palmitoyl transferase deficiency [II]Carnitine palmitoyl transferase deficiency [I]Carnitine-acylcarnitine translocase deficiencyEthylmalonic EncephalopathyFatty acid MetabolismGlutaric Aciduria Type ILong chain acyl-CoA dehydrogenase deficiency [LCAD]Medium chain acyl-coa dehydrogenase deficiency [MCAD]Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty AcidsMitochondrial Beta-Oxidation of Short Chain Saturated Fatty AcidsOxidation of Branched Chain Fatty AcidsShort Chain Acyl CoA Dehydrogenase Deficiency [SCAD Deficiency]Trifunctional protein deficiencyVery-long-chain acyl coa dehydrogenase deficiency [VLCAD] |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Chen et al. 2015 | – | serum | – | lung cancer | – | 30 | – | 61.58 ± 10.67 | – | before vs. after treatment (operation) | 30 | – | 61.58 ± 10.67 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Callejon-Leblic et al. 2016 | – | bronchoalveolar lavage fluid | diagnosis | lung cancer | – | 24 | 16, 8 | 66 ± 11 | – | noncancerous lung diseases | 31 | 23, 8 | 56 ± 13 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Wu et al. 2014 | – | urine | diagnosis | NSCLC | – | 20 | 10, 10 | 38-74 | – | healthy | 20 | 10, 10 | 35-66 | – |
Klupczynska et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II | 50 | 28, 22 | 65 (53-86) | – | healthy | 25 | 14, 11 | 64 (50-78) | – |
Chen et al. 2015 | – | serum | – | lung cancer (postoperative) | – | 30 | – | 61.58 ± 10.67 | – | healthy | 30 | – | 60.35 ± 12.48 | – |
Callejón-Leblic et al. 2019 | – | blood | diagnosis | NSCLC, SCLC | II, III, IV | 30 | 25, 5 | 67 ± 12 | former, current, non-smoker | healthy | 30 | 14, 16 | 56 ± 14 | former, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Yang et al. 2010 | – | urine | diagnosis | adenocarcinoma, squamous cell carcinoma | – | 35 | 23, 12 | 61.8 ± 13.3, 57.4 ± 9.8 | – | healthy | 32 | 27, 5 | 57.1 ± 9.9 / 45.6 ± 10.8 | – |
Li et al. 2015 | – | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma | – | 52 | – | – | – | tumor vs. adjacent normal tissue | 21 | – | – | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Chen et al. 2015 | LC | ESI | positive | Q-TOF | – |
Chen et al. 2015 | LC | ESI | positive | Q-TOF | – |
Mazzone et al. 2016 | LC | ESI | positive | linear ion-trap | MS/MS |
Callejon-Leblic et al. 2016 | DI | ESI | positive | Q-TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wu et al. 2014 | LC | ESI | positive | Q-TOF | MS/MS |
Klupczynska et al. 2017 | LC | ESI | positive | Quadrupole- Orbitrap | MS/MS |
Chen et al. 2015 | LC | ESI | positive | Q-TOF | – |
Callejón-Leblic et al. 2019 | DI | ESI | positive | Q-TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Yang et al. 2010 | LC | ESI | positive | QTRAP | MS/MS |
Li et al. 2015 | LC | AFADESI | positive, negative | Q-Orbitrap, Q-TOF | MS/MS |
Reference | Data processing software | Database search |
Chen et al. 2015 | Mass Hunter Qualitative Analysis Software (Agilent Technologies) | METLIN |
Chen et al. 2015 | Mass Hunter Qualitative Analysis Software (Agilent Technologies) | METLIN |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Callejon-Leblic et al. 2016 | Markerview | HMDB, METLIN |
Moreno et al. 2018 | – | KEGG, HMDB |
Wu et al. 2014 | MassLynx | HMDB, metlin, lipidmaps |
Klupczynska et al. 2017 | MZmine 2.19 software | In-house library |
Chen et al. 2015 | Mass Hunter Qualitative Analysis Software (Agilent Technologies) | METLIN |
Callejón-Leblic et al. 2019 | – | HMDB, Metlin |
Moreno et al. 2018 | – | KEGG, HMDB |
Yang et al. 2010 | MarkerView | HMDB, KEGG, Pubchem, mass bank |
Li et al. 2015 | Markerview (AB SCIEX) | LIPID MAPS, Massbank, HMDB, METLIN |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.6958399292663 | <0.001 | – | 1.57 |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 0.718470088272032 | <0.001 | – | 1.388 |
Mazzone et al. 2016 | two- sample independent t test | 0.995517± 0.2106721 | 1.023201± 0.1734553 | 0.972943732463123 | 0.2401905 | 0.352048394 | – |
Callejon-Leblic et al. 2016 | PLS-LDA, one-way ANOVA | – | – | 0.92 | 0.023 | – | 2.67 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.826748299437723 | 0.0144979795741536 | 0.0275524373725258 | – |
Wu et al. 2014 | OPLS-DA, student’s t-test | – | – | 2.83 | 0.0106 | – | 2.82 |
Klupczynska et al. 2017 | t-test | – | – | 1.12 | 0.00249 | 0.01772 | – |
Chen et al. 2015 | PCA, PLS-DA, independent t test | – | – | 1.21756601866299 | 0.001 | – | 1.165 |
Callejón-Leblic et al. 2019 | PCA, PLS-DA, one-way ANOVA | – | – | 1.44 | 0.0002 | – | 2.11 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 0.762109503097979 | 0.0000128278078810102 | 0.0000270893216369021 | – |
Yang et al. 2010 | OSC PLS‐DA | – | – | 3.7 | – | – | 1.79 |
Li et al. 2015 | t-test, PLS-DA, OPLS-DA | – | – | – | – | – | 3.72 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Chen et al. 2015 | – | – | – | – | – | – |
Chen et al. 2015 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Callejon-Leblic et al. 2016 | ROC curve analysis | – | 0.87 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wu et al. 2014 | ROC curve analysis | – | Carnitine+Acylcarnitine C3+Acylcarnitine C7:1+Acylcarnitine C8:2+Acylcarnitine C8:1+Acylcarnitine C8+Acylcarnitine C9:1+Acylcarnitine C10:3+Acylcarnitine C10:3+[Acylcarnitine C10:2+OH]+[Acylcarnitine C10:1+OH]+Acylcarnitine C12:4=0.958 (0.902-1.013) Taurine+Hippuric Acid+Tyrosine+Uric Acid+Carnitine+Acylcarnitine C3+Acylcarnitine C7:1+Acylcarnitine C8:2+Acylcarnitine C8:1+Acylcarnitine C8+Acylcarnitine C9:1+Acylcarnitine C10:3+Acylcarnitine C10:3+[Acylcarnitine C10:2+OH]+[Acylcarnitine C10:1+OH]+Acylcarnitine C12:4=1.000 (1.000-1.000) | – | – | – |
Klupczynska et al. 2017 | ROC curve analysis (Monte-Carlo cross validation) | – | 0.656 (0.511–0.776) | 0.52 | 0.76 | – |
Chen et al. 2015 | – | – | – | – | – | – |
Callejón-Leblic et al. 2019 | ROC curve | – | 0.73 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Yang et al. 2010 | – | – | – | – | – | – |
Li et al. 2015 | ROC curve analysis | – | – | – | – | – |