Metabolite information |
|
HMDB ID | HMDB0002005 |
Synonyms |
2-amino-4-[Methylsulfinyl]-butanoate2-amino-4-[Methylsulfinyl]-butanoic acidCucurbitsCytoplasmaDL-Methionine sulfoxideDigestionFaecalFaecesFecalFloraGourdsGramineaeL-Methionine R-oxideL-Methionine [S]-S-oxideL-Methionine sulfoxideLegumeMet-soMethionine sulfoxide, 35S-labeled, [+-]-isomerMethionine sulfoxide, [+-]-isomerMethionine sulfoxide, [2R]-isomerMethionine sulfoxide, [2S]-isomerMethionine sulfoxide, [R-[r*,s*]]-isomerMethionine sulfoxide, [S-[r*,s*]]-isomerPapilionoideaeS-Oxide-methionineStoolalpha-amino-gamma-[Methylsulfinyl]-butyric acid |
Chemical formula | C5H11NO3S |
IUPAC name | 2-amino-4-methanesulfinylbutanoic acid |
CAS registry number | 62697-73-8 |
Monisotopic molecular weight | 165.045963913 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Carboxylic acids and derivatives |
Sub class | Amino acids, peptides, and analogues |
Biological properties |
|
Pahtways |
Cystathionine Beta-Synthase DeficiencyGlycine N-methyltransferase DeficiencyHomocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblG complementation typeHypermethioninemiaMethionine Adenosyltransferase DeficiencyMethionine MetabolismMethylenetetrahydrofolate Reductase Deficiency [MTHFRD]S-Adenosylhomocysteine [SAH] Hydrolase Deficiency |
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | – | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Miyamoto et al. 2015 | – | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Wikoff et al. 2015b | – | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Moreno et al. 2018 | – | KEGG, HMDB |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 4847.45454545455 | 4774 | 1.01538637315763 | 0.989305286666861 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 758 ± 380 | 679 ± 285 | 1.12 | 0.454 | 0.773 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 825 ± 483 | 917 ± 451 | 0.9 | 0.327 | 0.652 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 353 ± 96 | 396 ± 128 | 0.892 | 0.119 | 0.367 | – |
Miyamoto et al. 2015 | Analysis of Covariance | 4094.66666666667 | 5455.55 | 0.750550662475216 | 0.0326676000313773 | – | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.20465438325205 | 0.031804077399662 | 0.0525421554828576 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 156 ± 50 | 178 ± 47 | 0.88 | 0.013 | 0.093 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.23495945200495 | 0.00482484591575189 | 0.00706463677205506 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.8 | – | 0.045 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |