Metabolite information |
|
HMDB ID | HMDB0002259 |
Synonyms |
17:0AdiposeBody fatC17:0CH3-[CH2]15-COOHCellular membraneCoffeeCoffee beanCucurbitsCytoplasmaDigestionExtracellular regionFaecalFaecesFat tissueFaunaFecalFloraGourdsGramineaeHeptadecanoateHeptadecoateHeptadecoic acidHeptadecylateHeptadecylic acidLegumeLipid bodyLipid dropletLipid metabolic processLipid particleMargarateMargaric acidMargaric acid, 1-[11]C-labeledMargaric acid, nickel [2+] saltMargaric acid, potassium saltMargaric acid, sodium saltMargarinateMargarinic acidMargarinsaeureMargaroateMargaroic acidMembrane integrity agentMembrane stability agentN-HeptadecanoateN-Heptadecanoic acidN-HeptadecoateN-Heptadecoic acidN-HeptadecylateN-Heptadecylic acidNormal-heptadecanoateNormal-heptadecanoic acidOmega I-123 heptadecanoic acidPapilionoideaeProstate glandSignal transductionStoolStriated muscleSurface-active agent |
Chemical formula | C17H34O2 |
IUPAC name | heptadecanoic acid |
CAS registry number | 506-12-7 |
Monisotopic molecular weight | 270.255880332 |
Chemical taxonomy |
|
Super class | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Sub class | Fatty acids and conjugates |
Biological properties |
|
Pahtways |
|
Author-emphasized biomarker in the paper(s) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | III, IV | 22 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II, III, IV | 33 | 26, 7 | median: 65 (55-81) | smoker, non-smoker, unknown | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Roś-Mazurczyk et al. 2017 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Hori et al. 2011 | – | serum | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | I, II | 11 | – | – | – | healthy | 29 | 23, 6 | median: 64 (34-78) | smoker, non-smoker, unknown |
Hori et al. 2011 | – | tissue | diagnosis | adenocarcinoma, squamous cell carcinoma, SCLC | – | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker | tumor vs. adjacent normal tissue | 7 | 6, 1 | median: 61 (53-82) | smoker, non-smoker |
Fahrmann et al. 2015 | – | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | – | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Callejon-Leblic et al. 2019 | – | serum | diagnosis | NSCLC, SCLC | – | 32 | 22, 8 | 66 ± 12 | former, current, non-smoker | healthy | 29 | 18, 11 | 56 ± 13 | former, non-smoker |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Mazzone et al. 2016 | – | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Moreno et al. 2018 | – | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Roś-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Hori et al. 2011 | GC | – | – | – | – |
Hori et al. 2011 | GC | – | – | – | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Callejon-Leblic et al. 2019 | GC | EI | – | ion trap | – |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Mazzone et al. 2016 | LC | ESI | negative | linear ion-trap | MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | positive, negative | LC: linear ion‐trap, GC: single‐quadrupole | LC: MS/MS |
Reference | Data processing software | Database search |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Roś-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Hori et al. 2011 | Shimadzu GCMSsolution software | commercially available GC/MS Metabolite Mass Spectral Database (Shimadzu Co.), NIST Mass Spectral Library (NIST 08) |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Callejon-Leblic et al. 2019 | XCMS | NIST Mass Spectral Library |
Moreno et al. 2018 | – | KEGG, HMDB |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Moreno et al. 2018 | – | KEGG, HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.99 | 0.923 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 477 ± 287 | 527 ± 368 | 0.91 | 0.497 | 0.788 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.97 | 0.494 | – | – |
Roś-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 1.2438 ± 0.6796 | 1.2944 ± 0.57039 | 0.960908529048208 | 0.44367 | 0.69016 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 420 ± 266 | 501 ± 372 | 0.84 | 0.374 | 0.671 | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.95 | 0.373 | – | – |
Hori et al. 2011 | student’s t-test, PLS-DA | – | – | 0.22 | 0.345 | – | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 429 ± 165 | 501 ± 217 | 0.856 | 0.057 | 0.265 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 327 ± 99 | 399 ± 252 | 0.82 | 0.035 | 0.15 | – |
Callejon-Leblic et al. 2019 | PLS-LDA, one-way ANOVA | – | – | 0.42 | 0.012 | – | 2.24 |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.36760943062056 | 0.000337677144483211 | 0.000950258118129036 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.2574511± 0.5272238 | 0.9636958± 0.5179013 | 1.30482160449387 | 0.000011 | 0.015006832 | – |
Moreno et al. 2018 | paired two‐sample t‐test, PLS-DA | – | – | 1.30162644311311 | 0.00000175476557614322 | 0.0000042822719564596 | – |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Roś-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Hori et al. 2011 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Callejon-Leblic et al. 2019 | ROC curve analysis | – | 0.78 | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |