Metabolite information |
|
HMDB ID | HMDB0000695 |
Synonyms |
2-Ketoisocaproate2-Ketoisocaproic acid2-Oxoisocaproate2-Oxoisocaproic acid2-Oxoleucine2-keto-4-Methylvalerate2-keto-4-Methylvaleric acid2-oxo-4-METHYLPENTANOIC ACID2-oxo-4-METHYLPENTANOate2-oxo-4-Methylvalerate2-oxo-4-Methylvaleric acid4-Methyl-2-oxo-valerate4-Methyl-2-oxo-valeric acid4-Methyl-2-oxopentanoate4-Methyl-2-oxopentanoic acid4-Methyl-2-oxovalerate4-Methyl-2-oxovaleric acidKeto-leucineKetoisocaproateKetoisocaproic acidMethyloxovalerateMethyloxovaleric acidOxoisocaproateOxoisocaproic acida-Ketoisocaproatea-Ketoisocaproic acida-Ketoisocapronatea-Ketoisocapronic acida-Oxoisocaproatea-Oxoisocaproic acidalpha-Ketoisocaproatealpha-Ketoisocaproic acidalpha-Ketoisocapronatealpha-Ketoisocapronic acidalpha-Oxoisocaproatealpha-Oxoisocaproic acidalpha-keto-Isocaproatealpha-keto-Isocaproic acidα-ketoisocaproateα-ketoisocaproic acid |
Chemical formula | C6H10O3 |
IUPAC name | 4-methyl-2-oxopentanoic acid |
CAS registry number | 816-66-0 |
Monoisotopic molecular weight | 130.062994186 |
Chemical taxonomy |
|
Super class | Organic acids and derivatives |
Class | Keto acids and derivatives |
Sub class | Short-chain keto acids and derivatives |
Biological properties |
|
Pathways (Pathway Details in HMDB) |
|
Reference | Country | Specimen | Marker function | Participants (Case) | Participants (Control) | |||||||||
Cancer type | Stage | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | Type | Number | Gender (M,F) | Age mean (range) (M/F) | Smoking status | ||||
Miyamoto et al. 2015 | US | blood | diagnosis | NSCLC, SCLC, mesothelioma, secondary metastasis to lung | I, II, III, IV | 11 | 4, 7 | 67 (61-73) / 67 (47-76) | smoker, non-smoker | healthy | 11 | 5, 6 | 69 (61-83) / 54 (44-61) | unknown |
Miyamoto et al. 2015 | US | blood | diagnosis | adenocarcinoma | unknown (mostly late stage) | 18 | 10, 8 | 67 (50-85) / 62 (53-72) | former, current | healthy | 20 | 8, 12 | 64 (49-80) / 66 (58-82) | former, current |
Ro?-Mazurczyk et al. 2017 | Poland | serum | diagnosis | adenocarcinoma, squamous cell carcinoma | I, II, III | 31 | 17, 14 | 52-72 | – | healthy | 92 | 52, 40 | 52-73 | – |
Mazzone et al. 2016 | US | serum | – | adenocarcinoma, squamous cell carcinoma | I, II, III | 94 | 55.3%, 44.7% | 68.7 | – | at-risk controls | 190 | 50.5%, 49.5% | 66.2 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 43 | 21, 22 | 67.3 ± 10.10 | – | healthy | 43 | 21, 22 | 65.9 ± 8.05 | – |
Fahrmann et al. 2015 | US | serum | diagnosis | adenocarcinoma | I, II, III, IV | 49 | 17, 32 | 65.9 ± 9.87 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Fahrmann et al. 2015 | US | plasma | diagnosis | adenocarcinoma | I, II, III, IV | 52 | 17, 35 | 65.9 ± 9.66 | – | healthy | 31 | 11, 20 | 64.1 ± 8.97 | – |
Wikoff et al. 2015b | US | tissue | diagnosis | adenocarcinoma | I | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker | tumor vs. adjacent normal tissue | 39 | 15, 24 | 72.33 ± 8.78 | smoker, non-smoker |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | adenocarcinoma | I, II, III | 33 | 24, 9 | 62.11 ± 9.73 | – | tumor vs. adjacent normal tissue | 33 | 24, 9 | 62.11 ± 9.73 | – |
Moreno et al. 2018 | Spain | tissue | therapy, diagnosis | squamous cell carcinoma | I, II, III | 35 | 35, 0 | 68.71 ± 7.46 | – | tumor vs. adjacent normal tissue | 35 | 35, 0 | 68.71 ± 7.46 | – |
Zheng et al. 2021 | China | Serum | diagnosis | lung cancer | I, II, III, IV | 57 | 38, 19 | Median: 62 (52-69) | smoker, non-smoker | healthy | 59 | 48, 11 | Median: 60 (59-62) | smoker, non-smoker |
Jiang et al. 2021 | China | Saliva | diagnosis | lung cancer | I | 45 | 16, 29 | Median: 57.8 | smoker, non-smoker | healthy | 25 | 10, 15 | Median: 52.9 | smoker, non-smoker |
Reference | Chromatography | Ion source | Positive/Negative mode | Mass analyzer | Identification level |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Miyamoto et al. 2015 | GC | EI | – | TOF | MS/MS |
Ro?-Mazurczyk et al. 2017 | GC | – | – | TOF | In-source fragmentation |
Mazzone et al. 2016 | LC | ESI | negative | linear ion-trap | MS/MS |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Fahrmann et al. 2015 | GC | EI | – | TOF | – |
Wikoff et al. 2015b | GC | EI | – | TOF | – |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Moreno et al. 2018 | LC, GC | ESI, EI | both | LC: linear ion-trap, GC: single-quadrupole | LC: MS/MS |
Zheng et al. 2021 | GC | EI | – | quadrupole | – |
Jiang et al. 2021 | – | MALDI | Negative | TOF/TOF | MS/MS |
Reference | Data processing software | Database search |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Miyamoto et al. 2015 | ChromaTOF software (Leco) | UC Davis Metabolomics BinBase database |
Ro?-Mazurczyk et al. 2017 | Leco ChromaTOF-GC | Replib, Mainlib and Fiehn libraries |
Mazzone et al. 2016 | Metabolon LIMS system | Metabolon LIMS system |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Fahrmann et al. 2015 | – | UC Davis Metabolomics BinBase database |
Wikoff et al. 2015b | BinBase | NIST11, BinBase |
Moreno et al. 2018 | – | KEGG, HMDB |
Moreno et al. 2018 | – | KEGG, HMDB |
Zheng et al. 2021 | MassHunter Workstation software, Mass Profiler Professional software | NIST14, HMDB, Golm Metabolome Database |
Jiang et al. 2021 | FlexAnalysis, ClinproTools software, R script | HMDB |
Reference | Difference method | Mean concentration (case) | Mean concentration (control) | Fold change (case/control) | P-value | FDR | VIP |
Miyamoto et al. 2015 | Analysis of Covariance | 3391.18181818182 | 3573.18181818182 | 0.95 | 0.95 | – | – |
Miyamoto et al. 2015 | Analysis of Covariance | 3495.05555555556 | 3470.75 | 1.01 | 0.92 | – | – |
Ro?-Mazurczyk et al. 2017 | two-sample T test, U Mann-Whitney test, Benjamini-Hochberg approach | 0.42639 ± 0.26632 | 0.58974 ± 0.43089 | 0.72 | 3.62e-03 | 0.07 | – |
Mazzone et al. 2016 | two- sample independent t test | 1.055456± 0.3916672 | 1.062205± 0.3537116 | 0.99 | 0.88 | 0.79 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 2042 ± 664 | 1939 ± 701 | 1.05 | 0.27 | 0.57 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 2058 ± 962 | 1734 ± 741 | 1.19 | 0.06 | 0.27 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3305 ± 1151 | 3421 ± 1210 | 0.97 | 0.65 | 0.82 | – |
Fahrmann et al. 2015 | regress (by the covariates: age, gender and smoking history [packs per year]), permutation test | 3629 ± 1120 | 3587 ± 1005 | 1.01 | 0.95 | 0.98 | – |
Wikoff et al. 2015b | OPLS-DA | – | – | 1.20 | – | 0.28 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 0.82 | 6.10e-03 | 0.01 | – |
Moreno et al. 2018 | paired two-sample t-test, PLS-DA | – | – | 0.75 | 4.51e-03 | 6.61e-03 | – |
Zheng et al. 2021 | Student’s t-test, Mann–Whitney U test, PCA, PLS-DA, and OPLS-DA | – | – | 0.89 | 4.73e-13 | 8.51e-13 | 1.08 |
Jiang et al. 2021 | Student’s t-test, PCA, Cluster analysis by Matlab. OPLS-DA | – | – | – | 3.90e-11 | 2.62e-10 | 1.66 |
Reference | Classification method | Cutoff value | AUROC 95%CI | Sensitivity (%) | Specificity (%) | Accuracy (%) |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Miyamoto et al. 2015 | – | – | – | – | – | – |
Ro?-Mazurczyk et al. 2017 | ROC curve | – | – | – | – | – |
Mazzone et al. 2016 | – | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Fahrmann et al. 2015 | random forest | – | – | – | – | – |
Wikoff et al. 2015b | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Moreno et al. 2018 | – | – | – | – | – | – |
Zheng et al. 2021 | – | – | – | – | – | – |
Jiang et al. 2021 | ROC analysis | – | 0.986 (Combination) | 97.2 (Combination) | 92% (Combination) | – |